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ABSTRACT. We survey recent results concerning Calogero-Moser and Toda systems and integrable gene-

ralizations thereof. We also discuss relations to infinite-dimensional integrable systems.
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1. INTRODUCTION

In recent years the well-known nonrelativistic Calogero-Moser and Toda N-particle systems have been
shown to admit integrable relativistic generalizations [1-3]. Results on the former systems and their
versions for root systems other than 4y _; have been surveyed by Olshanetsky and Perelomov in the
early eighties [4,5]. Here, we concentrate on results obtained since that time, especially as concerns the
relativistic systems.

We presuppose no previous knowledge concerning finite-dimensional integrable systems, but some
acquaintance with the surveys [4,5] would probably be helpful. Also, we limit ourselves to the physi-
cally most relevant case of translation-invariant interactions. Thus, root systems other than Ay _; are
only peripherally mentioned, and no external field couplings preserving integrability are considered.
Furthermore, internal degrees of freedom are mot discussed and we do not deal with the thermo-
dynamics associated with the systems.

Chapters 2 and 3 are concerned with the classical and the quantum versions, resp., of the class of
integrable systems just delineated. In both chapters integrability issues and relations between the vari-
ous systems are discussed in some detail. In Chapter 2 we also sketch our results on explicit action-
angle transformations [6-8], which lead in particular to duality relations between various parameter
regimes. These classical duality properties are of interest not only in their own right, but also because
they have obvious quantum translations.

This is explained in Chapter 3, in connection with our description of explicit knowledge concerning
the joint eigenfunction transform. This transform is the quantum analog of the action-angle
transform, and its duality properties agree with those of the action-angle transform in all cases where
this has been checked. In fact, our expectation that the classical self-duality of the ‘master parameter
regime’ at the ‘one-period’ level (the Il regime described below) will survive quantization has been a
crucial guide towards finding explicit eigenfunctions, some of which will be reported here for the first
time. As it turns out, the quest for a unitary eigenfunction transform for the relativistic systems leads
into uncharted territory at the intersection of Hilbert space theory and the theory of analytic
difference equations. Here, too, duality properties have been of considerable help.

In Chapters 2 and 3 we emphasize explicit knowledge concerning the action-angle and joint eigen-
function transforms, not only because we feel that these maps are the central mathematical objects in
the systems at issue, but also because this knowledge is indispensable in making contact with the
world of infinite-dimensional integrable systems. Chapter 4 is devoted to a sketch of some of the con-
nections that have emerged thus far. We believe there is a lot more in store here, especially at the
quantum level.

2. CLASSICAL SOLITON SYSTEMS

2A. CLASSICAL INTEGRABILITY AND THE SOLITON PROPERTY

To provide some context for our definition of ‘soliton system’ it is expedient to begin with some
remarks on the more general notion of ‘Liouville integrable system’. We shall restrict ourselves to the
simplest type of phase space <Q,w>, viz., the cotangent bundle over a region G CR”,

2 = {(3.0)eR™|qeG), @1
with its obvious symplectic form
N
0= 3 dgnde;. 22
j=1

Then a Hamiltonian H on Q defines a Liowville integrable system whenever there exist N independent
functions Sy, . .. ,Sy on @ such that

(HS)}=0 j=1...,N @23)
(5,8} =0, jk=1...,N 24
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It is important to note that in the very general, mathematical context of this definition the construc-
tion of integrable systems is just as easy (or hard) as the construction of canonical transformations.
Indeed, let  be a region in R*" with coordinates (g,8) and symplectic form

N -
o= E:@,Adaj. (2.5)
Now let & be a canonical map from @ onto ©, and define
H(3.6 = f8) @)
Su(3,0) = S 6,6, k=1,....N @7

1
1<i, < - <i,<N

where fe Cg (R). Then the pullback Hamiltonians

H = Hod 2.8)

Sp = 50 29
where

o=5", (2.10)

yield an integrable dynamics H on © with commuting integrals S, ...,Sy. Conversely, the
Liouville-Arnold theorem [9] implies that any integrable system H,,S),...,Sy may be viewed as
such a pullback. (Of course, the structure of <Q,&> will be far more complicated than just assumed,
in general.)

The upshot is, that the class of Liouville integrable systems is in essence equivalent to the class of
canonical transformations. (The qualifier cannot be omitted due to topological niceties we have no
occasion to recall here.) We shall now head for a much stronger notion of integrability, which is how-
ever tied to a quite special, physical context.

To this end, we consider a Hamiltonian H (g, ) that models the dynamics of N interacting particles
on the line. We assume that the interaction has a repulsive character. More precisely, we assume that
the wave transformations [10,11]

br: <OF, 05> > <Qu>, (§5,6%)-(g, 0) (2.11)

exist and are canonical maps onto {; moreover, we assume that the incoming and outgoing momenta

satisfy

0y >--->07, 6f<---<6. 2.12)
Since the asymptotic Hamiltonians

H* = Ho6. (2.13)
depend only on #%, it is easily seen that the choices H,S{, . ..,S¥" and H,SY, .. ., 8 yield Liou-
ville integrable systems when one defines

= > 6 -8, é=+,- (2.14)

1<iy < - -+ < <N
out

Sk = SFos3l. @.15)

Of course, one can choose other functions of 6= that generate the same maximal abelian algebras
on Q. For instance, one could replace Of‘ in (2.14) by exp(ﬁB,‘, ) with B&(0, 00). Such choices should not
be viewed as different from the previous ones. However, one can just as well introduce new momenta
p(6*) and canonically conjugate positions x(g*,8") such that the transform of H equals the function
p1; then the pullbacks to € of the functions py, X3, ..., XN yield a Liouville integrable system that is
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very different from the two previous ones.

This goes to show that any repulsive particle dynamics satisfying the above assumptions gives rise
to a plethora of Liouville integrable systems. Let us, therefore, introduce a far stronger notion of
integrability (which goes back to [12, p. 339]). We shall say that a dynamics H with the above proper-
ties defines a pure soliton system whenever

0f = O0y-x+1, k=1,...,N (2.16)

(conservation of momenta). Notice that this holds if and only if the incoming and outgoing integrals
are equal, ie.,

s =S¢, k=1,...,N .17

cf. 2.11)-2.15).

Pure soliton systems as just defined do exist, and will be studied in Section 2B. However, they are
by no means a common occurrence. In fact, within the confines described in the Introduction, the sys-
tems considered in Section 2B are the only ones for which the pure soliton property has been proved.

We shall extend the term ‘soliton system’ to Liouville integrable systems obtained from pure soliton
systems H,S,,...,Sy by finite-parameter deformations and/or analytic continuation. Admittedly,
this sounds like a somewhat loose characterization. However, it does serve to single out the systems
studied in Section 2C. Physically speaking, these systems are characterized by attractive and/or
confining interactions. In this physical context existence of nontrivial integrals (for the center-of-mass
Hamiltonian) is highly exceptional. In fact, the IV, soliton systems defined in Subsection 2C3 are (to
date) the most general Liouville integrable N-particle systems for which the interaction depends only
on interparticle distances.

2B. PURE SOLITON SYSTEMS
2BI. The Hamiltonian H. For the six classes of pure soliton dynamics detailed in this subsection the
phase space <{2,w> is given by (2.1), (2.2). The configuration space G can be taken to be

G = {geR¥|gv< - - <q1) (LI (2.18)
for the Calogero-Moser type systems I, IT and
G =RV 1) (2.19)

for the nonperiodic Toda type systems V1. For the three nonrelativistic classes the dynamics is of the
form

H= —’z-é 27 (g). 2.20)
Specifically, one has

Ugy=g' 2 Vig—q) geR’ @21)

1Sj<k<N

V(x) = 1/x? (L) 2.22)

V(x) = p/astihpx, pe(0,00) (L), (223)
Obviously, the I, case arises from the II,. case by taking p to 0. Substituting

g~ ¢+ e 224

g — lpe (2.25)

in the II;, Hamiltonian, and taking the strong coupling limit 0, one obtains the nonperiodic Toda
Hamiltonian, for which
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U= 3 explug—g-1)] (V1) (2.26)
1<j<N

We shall presently discuss the above dynamics and their commuting integrals S, . . ., Sy in more
detail. At this point we only note that among the Hamiltonians in the associated maximal abelian
algebras the above Hamiltonians H are singled out not only by their obvious physical interpretation,
but also by the fact that their flows are most easily studied. The Hamiltonians that follow now are
chosen for similar reasons: Their general structure reads

N
H=p" _EIGXP(MJ)'G@), @27
<

and the three classes of potentials are given by

172

v=1I 1+LL-| . Bew.=), ger' )  (29)

| @Ga)

5 172
v, =11 1———1‘—'15—— , B.pe(0,0), .tzei(o,w)u(—'zl+a) ILy) (29

ket sh™ (g — i)

V; = fr{gj+1—4)fr(gi—qi-1) (2.30)
Jrx) = [1+Fexp(ux)]2,  B,pe(0,0) @31)
gn+1 = T 0, gg = © V) (232

Note that the restrictions on the parameters guarantee real-valuedness of the Hamiltonians. The
subscripts ‘nr’ vs. ‘rel’ refer to the fact that the extra parameter 8 may be viewed as 1/c, where ¢ is
the speed of light. This is explained in detail in [1,2,13]. Here, we only point out that one has

N
He = NB'+ 3 6,+BH, +0(F), B0 (2.33)
Jj=1
for the cases I and VI; after the substitution
2 >5iPug @34)

this expansion follows for II, as well. Notice that with this substitution one can obtain H(I.4) from
H(Il) by taking p to 0. Moreover, after the substitutions (2.24) and

2 > Gir—Ine+ing (235)
one obtains H (V) from H(Il4) by sending € to 0 .

2B2. The Hamiltonians S, . . . ,Sy. For the nonrelativistic dynamics detailed above the existence of
integrals was first proved by finding a Lax pair representation

{H,L} = [L,M] (2.36)
for Hamilton’s equations. Specifically, one can take as Lax matrices [4]
1
Ly = 8B +ig(1—8)n/2sh5(g; —q0) 237
(from which L (I,,) is obvious) and

L(VIy)p = 8k + 8k -1 + 8k +1expli(q; ~ g5 1)} (2.38)
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Then one has in all three cases
H =T (239)

Thus, it follows from (2.36) that the symmetric functions S, ..., Sy of the Lax matrix L are con-
served under the H flow. Since the particles repel each other, one also concludes

L - diag(6%, . .. ,0%), t->=+o0 (2.40)

S - > 07 ---87, to*oo (241)
1<i < - <y <N
where 6* denotes the asymptotic momenta. But the spectrum of L is conserved due to (2.36), so that
conservation of momenta (2.16) results. Moreover, {S;,S;)} is an integral by the Jacobi identity, and it
has limit 0 for r—zoco since the interparticle distances diverge. Consequently, the Hamiltonians
S1, . ..,Sy are in involution.

The arguments just presented are physically convincing, but a rigorous proof of the soliton property
involves more work. For the above nonrelativistic systems such a proof was first given by Moser
[14,15].

Let us now consider the Il case. Here, it can be shown directly that the functions

12
sh’z

S = > exp(EBOJ)H 1———-2_1—-——— (2.42)
G g | sy
commute with H =87'S,. These Hamiltonians are the symmetric functions of the matrix
1
L(Ua) = exp(BO;)V(q)shz/sh(z +5m(g;— ) (243)

(recall (2.29)), as follows from Cauchy’s identity. Hence, the spectrum of L is conserved under the
flow generated by H. Moreover, Moser’s argument can be adapted to this flow. This yields (2.40),
(2.41) with 0} replaced by exp(ﬁO}), and entails again involutivity and the soliton property. The same
reasoning applies to the Iy case, obtained by substituting (2.34) in (2.42), (2.43) and taking p to 0.
(For more details concerning the assertions in this paragraph we refer to [1].)

For the case V14 a Lax matrix can be obtained from (2.43) by first substituting (2.24) and (2.35) in
a suitable similarity transform L of L(Il,q) and then taking ¢ to 0. Specifically, setting

Ly = B exptyulg; — gl (e @.44)
one obtains
0 k<j—1
L(VI)p = B“'ajbj k=j—1 (2.45)
B* /b k>j—1
where
a; = BPexplu(g;—¢;— 1)1+ Bexplu(g;—q;-1)D " (2.46)
b = exp(B8))V}(q) @47
cf. (2.30)+(2.32). The symmetric functions of this matrix read
S = 2 exp(ZB) T1 frigi+1—q) 11 frigi—gi-1) (2.48)
IC{L,...,N} jeI jel jel
=t JjHlel j—lel

Adapting Moser’s argument, the soliton property follows again. (The assertions just made are proved
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in [3]; the opposite ordering is used there.)
With the substitution (2.34) in L (IL), one easily verifies that

La=1y+BL,+0(BY), B—0 (2.49)
in all three cases. Using this expansion one can obtain the involutivity of the symmetric functions of
L, as a corollary of the involutivity of the L,y functions. Specifically, from (2.49) one infers

k N-I
Sior = lim g7F S (—yH S 2.
ko = Lo lgo( ¥ [ -—k] el (2.50)

from which the claim readily follows. Note that this formula for S ., is far from explicit, in contrast
to the formulas (2.42) and (2.48) for Sy a-

2B3. The action-angle transform and duality. Let us now turn to the construction of an explicit
action-angle map for the above systems. We begin by recalling that the Liouville-Amold theorem
guarantees the existence of such a diagonalizing map under certain conditions [9). But these are actu-
ally not met for the above systems: The radii of the invariant tori are infinite. Furthermore, even in
situations where the intersections of the relevant level sets are compact and connected (as is the case
for the type III and IV systems discussed in Section 2C), the Liouville-Arnold theorem is of little help
in obtaining explicit information, in much the same way as the spectral theorem is of no use in
obtaining the eigenfunctions and spectrum of a concretely given self-adjoint differential operator.  _

However, it turns out that for the above pure soliton systems and for the related systems of type II
and III (cf. Section 2C) one can construct an action-angle map ¢ whose relevant features can be esta-
blished in much more detail than one might reasonably expect. For all of the pure soliton systems the
action-angle phase space can be taken to be

Q= (G.H)eRY(by< - - - <b)) @51)
N ~
@ = 3 dginde; (2.52)
j=1

Comparing (2.51) with (2.1), (2.18), one sees that @ and £ can be identified in an obvious way for the
rational and hyperbolic systems I and II. Doing so, these systems can be defined on §, too. It now
turns out that the inverse & of ® may be viewed as an action-angle map for one of the latter systems.
Specifically, the duality thus obtained reads

Ipe =~ Lo, I = Ly, Lg = Mgy, Iy == 1. (2.53)
(The notation will be clear from context.)

Action-angle maps for the systems VI,, and VI, can also be constructed explicitly. Again, certain
duality properties arise, but these are less useful than (2.53). The maps may be viewed as limits of
those of the II,, and Iy systems, resp. However, this limit is hard to control and yields less informa-
tion than the direct construction. We refer to [3] for further details on the type VI systems.

The key to the construction of ® for the systems of type I and II is a certain commutation relation
of the Lax matrix with an auxiliary matrix-valued function A on &. We shall now sketch this con-
struction for the I,y case, picking =z €i(0,7). (The following is taken from our paper [6}, where also
previous work on special cases [16-18] is discussed.) In this case one has

Aje = Spexp(uge) (2.54)
and the commutation relation reads

Sothz[A,L] = e®e—5(AL +LA). (2.55)

Here, the vector-valued function e on { is defined by
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& = exp(ug;+ 7BV 259)" 2:56)

cf. (2.29). Combining this with (2.43), one readily verifies (2.55).
By exploiting (2.55) and Cauchy’s identity, it can now be proved that L has positive and simple
spectrum on £, and that any unitary U such that

UL(B2;q,0)U" = diag(exp(Bh)), . . . ,exp(pBy)), By< - <6, @57)

must satisfy (Ue);540, j =1, ..., N. The gauge freedom in the diagonalizing unitary can then be fixed
by requiring (Ue);>0, j=1, ..., N. This entails the existence of a unique vector eR" such that

(Ue); = exp(788;+5ug))V;(B,—2:0)" @58)
and then one obtains the relation

VAU = LB, —2:0,4) = A(B.p2:3:0) @59
As a consequence, a well-defined map

200 (400 (2.60)

emerges. From the duality relations (2.58), (2.59) it now readily follows that ® is a bijection with
inverse

6B,12:3,8) = Pod(uB,~2:8,3) @61)
where P is the flip map
P(xp) = (x), xyeR". (262

Our proof that the bijection ® is in fact real-analytic and symplectic is rather long and arduous,
and we shall not describe it here. (An important ingredient is scattering theory, to which we shall
presently turn.) We finish this subsection by noting that the canonicity of & together with its con-
struction as sketched above entails that @ linearizes the flows generated by Hamiltonians of the form

H,=Trh('InL), heCFR) (2.63)
Indeed, from (2.57) one has

Weoh = Gh = Sné) aen
Since & is canonical, this entails

exp(tHy )6 = 6o exp(tH,). (2.65)
Hence, the nonlinear flow

(g, ) » exp(tH} Xg, 6) = (9(1).6()) (2.66)
maps into the linear flow

@0) - expUHX3.0) = @i +2h' @), - .. .qn +h'Ox).B) = G0).0) @67)
as advertised.

2B4. Soliton scattering. As we have just seen, one has
q.80)) = &5().6) 2.68)

for Hamiltonians of the form (2.63). For the Il systems the quantities exp(ug;(2)) are the (ordered)
eigenvalues of the matrix
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AB, w2391+ Gy), - . . gy + 1k (By).0) 269

cf. (2.59). Hence, the long-time asymptotics of g;(r) boils down to a problem of spectral asymptotics.
Specifically, assuming henceforth ! F i

h”(x)>0, VxeR .70

:bllllcfneeds the spectral asymptotics of matrices of the form M exp(zD), where M is positive and D is of
e form

D = diag(d,, . ..,dy), dy<'--<d, Q@71

This problem can be solved under less restrictive assumptions on M and D, and the generalization
thus obtained is essential in our proof that & is canonical. (We mention in passing that the set of
matrices M that are allowed (cf. [6, p. 157)) may be viewed as the big cell in the Bruhat decomposi-
tion of GL(N,C). This observation is possibly useful in tackling other root systems. However, the use
of upper/lower factorization appears not to simplify the proof of l.c. Theorem A2.)

As a consequence of the spectral analysis just referred to, it can be concluded that the assumption
(2.70) entails

g; ORTTOES 1—'2A,~(5), 1>k @7)
N—j+1

6,  ®—8-0 =00 @73)
uniformly onNc:)gpl)acts. Here, one has

A;0) = 3 86;—6)— 386, —6) (2.74)

k<j k>j

8(6) = p~'In(1—sh®z/sh?= 66). @.75)
Thus, the scattering map

S:07 = {(g7.07)eR¥ by > -+ >07 )0 = @ (2.76)
is given by

ST s~ qus0T, - 08) = (g +An67), ... \qT +AE)ON,....07). @I

The factorization into two-particle S-maps exhibited by (2.74), (2.77) can be understood heuristically
as a consequence of the conservation of momenta (2.16) already obtained in Subsection 2B2 (cf. [19]
and [1, p. 381] for this argument).

The S-map (2.77) is shared not only by all dynamics H, with h satisfying (2.70), but also by a
much larger class of dynamics, containing in particular Sy, . ..,Sy—;. (Note only §; is of the form
H,, with h(x)=exp(Bx).) In fact, this invariance principle can be further generalized, and may then
be viewed as an asymptotic constancy property of the canonical transformation &, cf. [6, Th. 5.1]. By
duality, ®=6&""! also has this property. Conversely, any map of this kind gives rise to a duality
between pure soliton systems. Are the Il maps the most general real-analytic and symplectic bijec-
tions between <Q,0> and <£,0> having both the duality (=~ involution) and the asymptotic con-
stancy properties?

2C. SYSTEMS RELATED TO PURE SOLITON SYSTEMS
2CL. Systems with solitons and antisolitons. Following Calogero [20], let us substitute

q;—9; +in/p, j=n+1,...,N (2.78)
(with 1=<<n<<N —1) in the II,,, Hamiltonian. This yields



N -
H=13@+pp| 3 ——- 53 —1—| @ em
= S I 1t S B i 1 (IRl )
Thus, the resulting systems may be viewed as nonrelativistic interacting particle systems with » parti-
cles of positive charge (solitons) and N —n particles of negative charge (antisolitons); particles with
the same/opposite charge repel/attract each other.

If we make the substitution (2.78) in the more general II,y dynamics (2.27), (2.29), then we obtain a
real-valued smooth Hamiltonian on

2" = {(¢, R |gy< * - <gus1, G<" " <q1} (2.80)

provided z €i(0,7/2). We shall assume this for the moment, and will presently return to the critical
value z =in/2. As it turns out, the substitution (2.78) leads to the same picture as before. The physi-
cal characteristics of both the I, and the IIy systems can be completely elucidated via an explicit
action-angle map &®. (The results to be summarized now are detailed in [7].) Again, the commuta-
tion relation (2.55) is the key to the construction of ®®™. The substitution (2.78) gives rise to a Lax
matrix that is pseudo-self-adjoint w.r.t. the indefinite metric diag(l,,—1y_,). By exploiting well-
known properties of such matrices and Cauchy’s identity, one can show that the spectrum of L lies in
the closure of a strip

S, = {weC||lmw|<a} (2.81)
for the I.Im case, and in a sector exp(§,) for the fI,,l case. Specifically, one has

o =3lug] (L) (2.82)

«= |z (L) (283)

Non-real eigenvalues occur in complex-conjugate pairs, and each such pair corresponds to a soliton-
antisoliton bound state. All channels one can envisage occur, but they do not couple. That is, there is
a region in 9™ where L has real and simple spectrum, corresponding to an asymptotics of freely
moving solitons and antisolitons, and there are regions with k<min(n, N —n) bound pairs. There also
exist points in £ for which L is not diagonalizable; such points do not behave as scattering states.
Moreover, there are points that behave as multi-body bound states; this phenomenon depends on the
dynamics one chooses.

The case z=in/2 is different only in as much as singularities occur when soliton and antisoliton
positions coincide. Technically speaking, this entails that the H flow (for instance) is not complete.
However, the action-angle map enables one to define the flow for all times in a natural way, but for a
discrete set of times where solitons ‘overtake’ antisolitons. The singular character of z =ia/2 is most
easily seen for N =2. Then H can be written

H = 28™exp{ 580, +8)ich 5 B0, —6y)th gy — g2)} 2.84)

Thus, the set g; —q; plays a special role. In particular, by energy conservation 8, —8, diverges for
91—92-0.
Instead of substituting (2.78), one might also substitute

8;—0;+in/B, j=n+1,...,N (2.85)

in the IIy Lax matrix (2.43). Indeed, this also yields real-valued symmetric functions, cf. (2.42). This
type of Lax matrix actually arises on the subset of the action-angle phase space corresponding to the
‘no bound state’ subset Q) CQ™. (This fact can be understood from the self-duality of the Il,y
regime described in Subsection 2B3.) As a consequence, one can infer that the H flow arising via
(2.85) is not complete. Indeed, the corresponding dual flow on the subset of " just mentioned pulls



175

back to a linear flow on £; for an open set of initial points this flow leaves Qf” in finite time. This
unstable behaviour can be physically understood by noting that (2.85) amounts to flipping the sign of
the particle mass, cf. (2.27).

One can also continue both some g; and some §;, since this still leads to real-valued commuting
Hamiltonians, cf. (2.42). However, in this case the Lax matrix appears not to have any properties
that can be used to elucidate the relevant features of the dynamics.

‘As a preparation for the next subsection, we now rephrase the mathematical setting of the above
results. Wt:. have at our disposal a symplectic diffeomorphism @ from <Q,w> (cf. (2.1), (2.2), (2.18))
onto <8,w> (cf. (2.51), (2.52)), which is real-analytic in the parameters and in the canonical coordi-
nates, cf. [6, App. B,C]. This map can be analytically continued in ¢ and then restricted to certain
real, N-dimensional submanifolds of C¥, cf. (2.78). These give rise to new phase spaces (cf. (2.80)),
who_sc images under ® can be explicitly determined. Correspondingly, one can obtain detailed infor-
mation concerning associated Hamiltonian flows.

More generally, singularity and monodromy properties of ® can be determined rather explicitly,
but the structure of the image set appears too complicated to answer with ease every question one
may care to ask. For instance, the behaviour under the continuation (2.85) can be understood from
duality considerations, but we have no information concerning simultaneous continuation in ¢ and 6.
The feasibility of answering concrete questions hinges on special features of the Lax matrix, restricted
to the real, 2N-dimensional submanifold of C% which is chosen as a new phase space.

2C2. Sutheriand type systems and their duals. The preceding considerations suggest a systematic
aggroach: Find the physically interesting and mathematically manageable phase spaces embedded in
C*", as obtained from the pure soliton regimes via analytic continuation in ¢,6 and/or the parame-
ters.

As a first example along these lines, one may start from the II,; systems and continue the positive
parameter p to the imaginary axis. (Equivalently, one may keep p positive and take g and ¢, . . . ,qn
purely imaginary.) Then one obtains again a self-adjoint Lax matrix, with

1 1 X 1
H=Tt=; S0+ 3 ———— (L) 2.:86)
j=1 I<j<k<N SiHZEM(‘Ij"'QIc)

The obvious physical interpretation of the III,, systems thus obtained is now in terms of particles on
a ring. On account of energy conservation the angular distances |g; —¢;| remain finite for all times.
Omitting the center-of-mass motion, an appropriate configuration space is the “Weyl alcove’

N-1
G = (xeR" lxy, ..., xy1>0, 3 x;<2n/|u}, x=g;—qj+ .87
j=1

and each state in the corresponding (2N —2)-dimensional phase space is a bound state.
The action-angle map ® can be determined explicitly for the III,, systems [8]. In particular, one can
prove that the (ordered) eigenvalues of L(IIl,) satisfy }
8,=0;+1 > |pgl (2.88)
The exceptional set £, where one or more equality signs are realized is nowhere dense and has. meas-
ure zero; it contains the equilibrium configuration
=T
L
for which all equality signs in (2.88) apply. The map & is defined on the complement of Q,, and sets
up a duality with III,, systems that can be obtained from the above Iy systems, as follows:

Ly — Ml B.g,0 > wbg pei(0,00) (2.90)

W+1-2j), 6,=0, j=1,...,N (2.89)



176

At first sight the III, systems thus obtained appear unphysical. Indeed, due to (2.88) the 6-
dependent potentials in Sy, . . . , Sy are positive on Q(IIL,), but the exponentials in (the Iy speciali-
zation of) (2.42) turn into phase factors after the substitution (2.90). However, this is easily remedied.
What matters is whether there exists a real form for the maximal abelian Poisson algebra. To explain
that this is indeed the case, we need a piece of information from [1,2] we had no occasion to mention
so far. This is the fact that the functions S)(8) given by (2.42) commute with S;(— B). Therefore, we
may replace exp by ch at the rhs of (2.42), and then we do get real-valued g-dependence under the
substitution (2.90).

In particular, the dynamics
. ~ i 2 112 .
H=p"cos(mz) I [1 - —“ﬂi——] (11, 291
=1 = I (s

is real-valued. The flow it generates has a quite different character compared to the flow generated by
(2.86). In fact, the III,, systems may be viewed as pure soliton systems, in a sense detailed in [8].

As a second example of the program described in the first paragraph of this subsection, one may
continue the parameter g in the II,, systems to the imaginary axis. (In fact, this can already be done
for the special case I,,.) However, this leads to ‘physically interesting’ systems that seem not to be
‘mathematically manageable’.

In the same spirit one can obtain from the Il pure soliton systems seven other regimes of physical
interest, by first parametrizing z as

z =‘]5iﬁug, B.1.ge(0,0) (ILg) (2.92)

and then taking B,u and/or g purely imaginary. However, we can only handle the three cases that
arise when one keeps g real, for reasons just mentioned. The systems obtained by taking
pei(0,00)/B,pei(0,00) will be denoted Il /Il ;. When one only takes B€i(0,00), one obtains sys-
tems that may be viewed as the III,, systems (i.e., the systems dual to the IIl,y systems, cf. also
(290)). .

.. The salient features of the Il and IIL, systems are essentially the same as those of the III,, and
III,, cases already described. In particular, with (2.34) in force, one can prove the inequalities (2.88)
for the eigenvalues exp(B6;) of L(Ill,y), and for the equilibrium (2.89) one again obtains equality
signs.

g'?'hv: self-dual regime I1l  is quite different from all previous ones. As before, we should replace
exp by ch in (2.42) to obtain real-valued dependence on 6. However, to also ensure real-valued ¢-
dependence, one now needs a center-of-mass configuration space

N=1
Gy = (xeR¥ !|xy, ..., xn—; >|Bg), 2 x5<2a/|u—|Bgl}, X, =gqi—g+1- (2.93)
j=1
As a consequence, G, is non-empty if and only if
. 1. |
N<iwm/z, z =iBpgei(05m) (2.94)

Therefore, not only the configuration space, but also the allowed particle number is bounded. In fact,
the regime I, has yet a third boundedness property: The natural center-of-mass phase space is not
T"G~GXR" !, but rather GXU(1Y¥ ! [8].

2C3. Elliptic systems. The nonrelativistic Hamiltonians considered thus far may all be regarded as
special cases of
N

03+g* 3D Ng—q 0w, geR', o, —iw'e0,0)  (Vy). (295
=1 1<j<k<N

=41
H=7
J
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(Here, & is the Weierstrass 9-function; the restriction on the primitive periods 2,2’ guarantees posi-
uv_lty on R.) More precisely, this is true for the I, I, IIE,, and Vgnﬂamiltonianil:a:ne nwdspofo
shift g, 11, . .., gy Over &' (obtaining a real-valued IV,, Hamiltonian) to ensure that the I, Hamil-
tonian (2.79) results (up to a constant) when one sets ' =i#/p and takes w to co.

Tl}e commuting Hamiltonians that generalize those of previous sections can be taken to be the sym-
metric functions of the matrix

. o(g; — g t+2)
L = 8,6, +ig(1~8;)— T
(IVao)je = 8l +ig(1—8;) P E— (2.96)
Here, o is the Weierstrass o-function and AeC an auxiliary parameter. The Lax matrix (2.96) was
introduced by Krichever [21]. He shows that the H flow linearizes on the Jacobian of the genus N
curve defined by

ILQ)+aly| =0 @97
Krichever’s results pertain to complex gj and 6, and it seems not an easy matter to obtain results for
real 2N-dimensional phase spaces of physical interest.

As the relativistic generalization of (2.95) one can take {1,2] the dynamics (2.27), with

v, = I/ (g—q 2.98)
ki
Fx) = PO —Hx),  Eive(0,—2iw) Vo). (2.99)

Then one has H =B~ 'TrL, where L is the Lax matrix [22, 2]

_ 1 9(g =g +N)
LIVea)je = exp(B89))V;(¢) & 0()3 a(q]z(;{:+y) :

A Lax pair formulation for the H flow has been found by Bruschi and Calogero [22], whereas in [2] it
is proved that the symmetric functions of L are given by

3 = QT 5 5T Fg—g0) @.101)
o) 1€ M el e

(2.100)

and are in involution. Note that after the substitution

Y- iBg (2.102)
the expansion (2.49) again holds true. Therefore, involutivity of the symmetric functions Sy of L(IVy,)
follows as a corollary, cf. (2.50). Moreover, since ; depends on A only via a multiplicative factor, the
functions S;(A;) and S;(A;) also commute pairwise when A;5%A,.

For the IV, case the curve (2.97) appears to have (generically) genus 1+N (N —1)/2 [2].

There is yet another parameter regime of physical interest, which generalizes the Il 5 regime. It is
defined by taking

BeiR’, ve(0,0) (WVeas) (2.103)

The generalizations of (2.93) and (2.94) read
N=1
Gy, = {xeR””lxl, e XN1D>Y D x%<2W—v), X = ¢ gj+1 (2.104)
=

J
N<2w/y (2.105)

and commuting real-valued Hamiltonians can then be defined via (2.101), with the prefactors omitted
and exp replaced by ch.

2C4. Periodic Toda type systems. The periodic Toda systems can be defined by
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N
H=336+7 3 explu(g;—gj 1)1+ explu(g) —qw)]
j=1 I<j<N

TeR’, pe(0,o) (Var) (2.106)

(The systems denoted type V by Olshanetsky and Perelomov [4,5] may be viewed as type I systems
perturbed by an external field.) As Lax matrix one can take [23,4]

L(Var)ix = 8l +8j4 1 +78;4 41 explulg;—gj—1)]

~ (" A8y — (1) "N 718,18,y explmlg, —gw)) AeC’ (2.107)
and then (2.39) again holds true (up to a constant when N =2). Substituting
g~g~2p o, j=1,...,N (2.108)

one obtains L(VI,) in the weak coupling limit 70, cf. (2.38).

The commuting V,, flows can be linearized on the Jacobian of the algebraic curve (2.97), which is
hyperelliptic and has (generically) genus N —1 [24,25]. Just as for the IV, case, little seems to be
known for real ¢ and 6.

The V, generalization of (2.106) can be taken to be (2.27) with V; given by (2.30), but now (2.31),
(2.32) should be replaced by

fr) = [1+78 exp (o] (2.109)

WHa=EqQ, =gy Veat) (2.110)

This again entails the expansion (2.33). The commuting integrals are still given by (2.48), but now
with (2.109), (2.110) in force [3]. Bruschi and Ragnisco [26] found various Lax pair formulations for
the H flow, and used one of these to obtain a linearization on a spectral curve defined in analogy with
(2.97).

Inozemtsev recently observed that the V,, Hamiltonian (2.106) may be obtained as a strong cou-
pling limit of the IV, Hamiltonian (2.95) [27). A priori, his argument sheds no light on the
behaviour of the conserved quantities in his limit. However, we shall now show how one can obtain
the V,, Lax matrix (2.107) from the IV, Lax matrix (2.96). Moreover, we shall obtain a V4 Lax
matrix from the IV,y Lax matrix (2.100). On account of the mode of convergence and the argument
embodied in (2.50), the Liouville integrability of the systems of type V may then be viewed as a corol-
lary of the involutivity of the functions =, given by (2.101).

The limits to be detailed now can be easily controlled and verified by using the representation

[1 —exp(ug — 2k )] [1 — exp( — pg — 2kpw)]
[1—exp(—2kpw)f

for the Weierstrass o-function. (Here, the notation of [28] is used.) For both limits one needs position
shifts given by

olgiw,inlp) = exp(n'pql/zm)%sh—’z—pqn @111
k>0

g—g—2%w/N, j=1,...,N (2.112)
The first-mentioned connection can be made by starting from the similarity transform
L = L@AVa oxplEig — g0+~ ) @113)
Substituting (2.112) in L, together with
g = ' exp(uo/N) (2.114)
Aowt+Z oL @.115)
"

one obtains
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limLy = LOVa)pGry ~* @116)

(as anticipated in the choice of spectral parameter in (2.107)).
For the second transition we make use of a renormalized Lax matrix

e = LV, &Xp (S RE YN ~ D+ A=7Xg;~ ) @117)
Substituting (2.112) in L”, together with
2w  im 2
Yot u + . In(Br) 2.118)
20,2 _Nien—L
Ao 5t p In(Bn) p In(iBr) . InA (2.119)
one obtains
lmL7 = BA+A) = L(Va) (2.120)
B = diag (b1, - - . ,bw) (2.121)
Ap = 84 1 [1+GB)Na; — 8,81+ (B A" gy (2.122)
— @B\ k<j-—1
A = {1 k>j—1 (2.123)
a; = B explu(g;—g;-1)1 + B explulg;—g;- 1))~ (2.124)
; = exp (B8, X1+ B explu(g;+1—g)D"*(1+ B explu(g; —g¢;-1)D"? (2.125)

Taking w—»>oco in the symmetric functions of L" (which follow from (2.101)) one obtains the symmetric
functions of L(V.q). Explicitly, one finds
[1+GEBTYVAY LS, =1,..,N—1
2= {[l+(iﬁ'r)N/\}N +GBN Sy, I=N 2.126)
where S, . ..,Sy are given by (2.48) (with (2.109), (2.110) in force, of course). Thus, involutivity of
S\, ...,Sy may be viewed as a corollary of the involutivity of the elliptic Hamiltonians (2.101), as
announced above.
We add four more remarks. First, up to a constant and a similarity transformation, the matrix
L(V,)T equals the Lax matrix of a Lax pair for the H flow that was recently obtained by Oevel and
Ragnisco [29]. Secondly, setting

LVeadse = LOV)pB* ™ @127
and substituting (2.108), one obtains

lim L(Vea) = L(VLa) (2.128)
cf. (2.45)-(2.47). Thirdly, one has

L(Vea) = Iy +BL(Va)+O(B), B0 (2.129)

of. (2.107). Therefore, the Liouville integrability of the nonrelativistic periodic Toda systems may be
viewed as a corollary of the Liouville integrability of our relativistic generalizations, cf. (2.49), (2.50).
Fourthly, from (2.129) and (2.126) one infers (by using (2.50) with S, replaced by %) that the func-
tions Sx(Var) are A-independent for k <N, whereas for k =N the A-dependence is given by an addi-
tive term (i 7Y[A ™! +(—)"A). (This can also be seen directly from (2.107).)
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3. QUANTUM SOLITON SYSTEMS

3A. QUANTUM INTEGRABILITY AND THE SOLITON PROPERTY o )
A Hamiltonian on a symplectic manifold <{,w> does not have any (nontrivial) integrals, in general.
Therefore, the notion of Liouville integrability is a restrictive and hence useful one in the context of
general classical Hamiltonians. o

In contrast, a self-adjoint Hamiltonian on a Hilbert space I always has nontrivial integrals (assum-
ing its spectral multiplicity is greater than one). Indeed, this is an obvious consequence of the wﬂ
theorem. Therefore, no abstract analog of Liouville integrability exists for general quantum Hamil-
tonians.

However, starting from a concrefe Liouville integrable system H(g,6), S l(q, o),... ,SN(q, 0), the
question whether a quantization of these Hamiltonians exists such that they still commute is a well-
defined one. (Here and below, ‘quantization’ will mean the substitution

08 = —ikv,, G

where h denotes Planck’s constant.) Whenever the question has an affirmative answer, we shall refer
to the operators thus obtained as defining a quantum integrable system. In this sense, all of the sys-
tems discussed in Chapter 2 turn out to admit integrable quantum versions.

Next, recall that the notion of Liouville integrability is useless for classical Hamiltonians describing
systems of repelling particles on the line, it being always satisfied under mild conditions on the forces.
Therefore, we singled out the systems studied in Chapter 2 by first introducing the notion of pure sol-
iton system, cf. Section 2A.

In the same physical context, this notion has a quantum analog. Specifically, let us assume that the
dynamics is sufficiently repulsive for the wave operators [10]

6+ : I = LY(G*,dV0)-H=L*G,d"g), G*,GCRY (32)

to exist and be isometric from 3¢ onto 3C Then we shall say that the dynamics gives rise to a pure
soliton system when the S-operator

S=637'6- (3.3)

conserves momenta. (This notion is worked out in more detail in [12].) Observe that the requirement
is only useful when more than two particles are involved (just as in the classical case). Note also that
we are not requiring that a quantum pure soliton system be a quantum integrable system arising from
a classical pure soliton system (this would exclude examples that will be discussed in Section 4C).
However, the term ‘quantum integrable system’ will be used for any quantum pure soliton system,
whether it has a classical version or not.

As already mentioned, the classical pure soliton systems H,S,, . . ., Sy of Section 2B can be quan-
tized in such a fashion that the commutativity property is preserved. Except for the VI case, the
commuting operators are (formally) self-adjoint on L%(G,d"q), where G denotes the classical
configuration space. Under such circumstances one expects to obtain quantum pure soliton systems
as just defined.

To explain why it is plausible that the soliton property survives quantization whenever the classical
Hamiltonians admit commuting, self-adjoint quantizations H, S,, . ..,Sy, let us first note that the
spectral theorem guarantees the existence of an isometry & that simultaneously diagonalizes the quan-
tum Hamiltonians on an L%-space . On physical grounds one expects to be able to choose

% = LA(G.d"0), (34)
where G denotes the definition domain of the classical action variables. Also, the kernel of & should
be a joint eigenfunction E(¢,0), ¢€G, #eG. Taking interparticle distances to oo, the operators

S1,...,Sy reduce to the symmetric functions of the operators 6, ...,0y and exp(B6,), ...,
exp (86y) for the nonrelativistic and relativistic systems, resp. Thus, one expects E(g,0) to have plane-
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wave asymptotics. A consideration of the long-time asymptotics then leads to the expectation that the
momenta are conserved. In a similar vein, one can argue that the spatial asymptotics of E(g, ) should
factorize into two-particle quantities, and hence the S-operator should factorize too, as a quantum
analog of the factorized scattering described in Subsection 2B4. (For more details on these heuristics,
see [19].)

Let us now sketch the contents of Section 3B in relation to the above notions. We first detail how
the pure soliton systems of Section 2B can be quantized in such a fashion that commutativity is
preserved. Then we shall try and describe to what extent the scenario of the previous paragraph has
been realized for the resulting quantum integrable systems. Let us mention here that even for the sim-
plest case I, the scenario has not been completely filled in yet. Thus, it is not yet certain that the
quantized pure soliton systems of Section 3B are quantum pure soliton systems as defined above. (To
be sure, finite-dimensional quantum dynamics do exist for which the soliton property has been
rigorously proved. We shall return to this in Section 4C.)

In Section 3C we shall be concerned with quantum integrable versions of the systems discussed in
Section 2C.

3B. QUANTIZED PURE SOLITON SYSTEMS

3BI. Preserving commutativity. The quantization substitution (3.1) leads to unambiguous, (formally)
self-adjoint operators H on the Hilbert space L*(G,d" q) for the cases I,.,Il,, and VI, cf. (2.18)-
(2.26). This also holds true for the symmetric functions of the Lax matrices (2.37) and (2.38). Indeed,
one obtains sums of terms each of which is a product of commuting operators; then self-adjointness is
clear from the fact that the classical functions are real-valued. In [5] it is proved that the operators
thus obtained commute. The idea of the proof is to exploit classical results: One need only show that
the extra terms (compared to the classical case) arising when partials are pushed through sum to zero,
since the remaining expression is already known to vanish.

Let us now turn to the relativistic cases. Here, ordering problems already occur for the dynamics H,
cf. (2.27). We shall first consider the Il case, cf. (2.29). As can be seen from explicit calculations for
N =3, various ‘obvious’ choices for the ordering in H and Sy, ...,Sy (cf. (2.42)) spoil commuta-
tivity. In this connection it should be pointed out that no a priori argument is known from which the
existence of an ordering choice entailing commutativity would follow. However, for the systems at
hand such a choice does exist: For any 4 the operators

S= 3 T1/-@—a exp BT f+(g—a) 3.5
cq,..., N} jeI jel ~ jel
|I|=l kel kel

commute when one sets
1 1 1,
f(g) = sh(Gpg+z)/shspg, z=iPug (3.6)
This claim can be shown to follow from the functional equations

sh(x; —x; — y)sh(x; —x;,+v—p)
rc oy fier  ShGa—x)sh(x —x;—p)
=k  tjer
which hold for any N >1, ke(l,...,N}, xeC¥, y,peC [2].

Classical commutativity can now be obtained as a corollary of quantum commutativity. Indeed, the
functional equations (3.7) reduce to the functional equations expressing involutivity when one divides
by p and takes p to 0 [1,2]. Moreover, quantum commutativity for the II,, case may also be viewed as
a corollary.

To explain the latter statement, we introduce the commuting operators
& |V
AB = Sy i |SB), k=1, N 39
=0

—(x—=>—x)| =0 3.7
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We have made the f-dependence explicit, since we are going to consider the nonrelativistic limit 8—0.
(The formulas (2.49), (2.50) should be recalled at this point.) Thus, we expand A4,(B8) as a formal
power series

4® = S g, B0 (3.9)
m=0
and calculate
AP =0, A=, (3.10)
j
AP =AP =0, AP =3 |68, —g(z - h)————l‘——— @3.11)
<k ask gy~ qe)

Here, the replacement of g2 by g(g — k) as compared to the classical case (recall (2.21)) is due to con-
tributions arising when the partials in (3.5) act on the potentials.

Next, we set
Hy = — 3R+ ggg - S ———— 3.12)
i<k sh™5 p(g; ~qi)
and note that
1
—A (B} —4,(B) = BHu+0(B%), B—0 (3.13)
Therefore, setting
e = min ({4540}, k=1,...,N (3.14)
we may conclude that H,, commutes with 4J*). Noting that
AP = 2 0, . 31.’ £=0, (3.15)

h<
we infer n, <k. Now assume n, <k. Then AP is a sum of terms arising when one or more pamals
act on the coefficients of the Taylor series of f, around 8=0. Any such term has period 2wi/p in the
g; and vanishes when the interparticle distances are taken to oo, cf. (3.6). Next, consider the sum M,
of all terms T} ; in A ) that are of maximal degree dj in the 6;. Since H,, commutes with A("‘) the
sum of all terms of degree d,+1 in the commutator [A, M;] must vanish. It then follows from the
proof of Lemma 2.5 in a paper by Berezin [30] that the coefficients of the T} ; are polynomials in the
g;- By periodicity these coefficients must then be constants, and taking interparticle distances to oo, it
follows that these constants are zero. Hence we infer 4™ =0, which contradicts (3.14). Therefore, we
must have n, =
The upshot is, that we have now proved

[H o, A$P1=0, k=1,...,N (3.16)
48, 491=0, kI=1,...,N 3.17

However, the above arguments do not yield an important piece of information on Af®: it must be the
k" symmetric function of the quantized Lax matrix (2.37), with g replaced by [{(g ]2, Indeed,
as alréady mentioned, the latter operator commutes with H,, [5]. Subtracting 4f") yields an operator
commuting with H,, that must be zero by the above reasoning: The point is again that the difference
consists of (2uri/p)-periodic terms that vanish for |g; — ge|—>o0.

Thus far we have restricted ourselves to the systems of type II. The relevant information for the
type I systems now easily follows from the above by taking p to 0. We proceed by considering the
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quantization of the V4 functions (2.48). Here, the ordering choice that ‘works’ is given by

S= 2 I figr—ep®B) I frig—g-1) (3.18)
Ic(l,...,N} jeI jel jel
W=i""" j+ies j=lel

This can be proved either directly [3] or by reduction to the Il case via the substitutions (2.24),
(2.35) and the limit ¢—0. In the same way as for the Il case, VIy quantum commutativity now
leads to commutativity for the classical VL4 and quantum VL, systems.

The ILy operators (3.5) are (formally) self-adjoint, provided z €iR. In contrast, the VL operators
(3.18) are not self-adjoint (except when Afu=2nk, k€Z). When one takes z =y +ix/2 with veR’ in
(3.5), self-adjointness is also violated. (Recall the VI case arises for y—>o00.) Thus, if a joint eigen-
function transform exists for the latter cases, it is not going to be isometric.

From now on we use the convention A=1. Since g has the dimension of action, it should cause no
surprise that the above operators turn out to have special properties for geN. We note in particular
that (3.5), (3.6) entail

S = > exPw(‘?’:. + - +51.)], g=1 (3.19)

I<i, < - - <i, <N

Hence, the quantum I,y systems are free for z =IEiﬁp..

3B2. The eigenfunction transform and duality. For special values of g (in particular %,1 and 2) the
commuting L, /II,, operators can be related to the radial parts of the Laplace operators on
zero/negative curvature Riemannian symmetric spaces with restricted root system Ay _;. (More pre-
cisely, this is the case when the center-of-mass coordinate is omitted.) The VI, systems can also be
tied in with harmonic analysis on symmetric spaces.

For the cases just mentioned the eigenfunctions are known explicitly and have been studied in great
detail. (A lucid and nontechnical survey of results obtained in the symmetric space context can be
found in [5]; systematic and detailed treatments are presented in [31-33].) In particular, for each per-
mutation o there exists a unique function E, satisfying

SiE(q.0) =E(q0 3 6,---6,, k=1,...,N (3.20)
< <
Eq(q.0) ~ exp(igf,), qv<<gn-1 " <<q 321)
where
0, = (Ouq1)s - - - s Oogy)- (322

Moreover, a suitable linear combination E (g, f) of these N'! joint eigenfunctions solves the Plancherel
problem. That is, the operator

&: = L2(G,d"6)>X = LG d"g), fr [d8E(-,0) (6) (3.23)
G

is an isometry from % onto 9, where

G, (Lo, 1)

& = {)’ERN[)’N< e <y|}, G = RN, (VI‘“)

(3.29)

(cf. (2.18), (2.19), (2.51)). Of course, the case g =1 is trivial: Then (3.12) corresponds to the radial part
of the Laplace-Beltrami operator on GL(N, C)/SU(N), and one obtains

E(q,0) = expligf,), E = m)y V?>3(-YE,, g=1 (3.25)



184

Recently, joint eigenfunctions for the II,, case with g taking arbitrary values have been constructed
by Heckman and Opdam; moreover, their results apply to arbitrary root systems [34-37]. The above
picture for the symmetric space values of g is not substantially modified, but the Plancherel formula
(‘orthogonality and completeness’) has not been proven yet.

Let us now turn to the relativistic cases Iy, Il and VI. Here, the quest for explicit joint eigen-
functions leads to problems of a novel nature, most of which have not been solved to date.

To explain some of the difficulties involved, and to sketch some of our results obtained thus far, we
specialize to the Iy and Il cases with N =2. (Even for N =2 we have no information on eigenfunc-
tions for the V4 case.) Then the problem is to find eigenfunctions for the operator

H= [Sh”(:h:;ﬂg)rm [Sh”(;’hj;ég)]jﬂﬂ—»—m (326)
Here, we have introduced the formal translation operator

T AP =Sg—9, ¢eC 327
and the new parameter

v=p/d (3.28)

(When we would stick to p, various factors 2 would arise due to our use of asymmetric center-of-mass
variables

9=q1-q2, 8 = (6;—6,)/2, (3.29)

cf. also (3.5), (3.6) with N =2, /=1, h=1.) More in detail, for N =2 the key question is, whether a
function E exists such that

‘]5HE (g.6) = E(q,8)chpo (3.30)
and such that the operator
(6fXg) = [d6E(q, 6)f (9), FeC8 (0,0 (3.31)
0

gives rise to an isometry between the Hilbert spaces
9= L0, c0),d6), 9= L2([0, c0),dg). (3.32)

There appear to be no results in the vast literature on eigenfunction expansions that have a direct
bearing on this question. More generally, the (once very active) study of analytic difference equations
(4 AEs) and analytic difference operators (4 AOs) (such as (3.30) and (3.26), resp.) seems to have been
abandoned, by and large, before functional analysis and quantum mechanics really got off the ground.
Indeed, the last full-fledged monograph devoted to 4 AEs appears to date from 1924 [38]. (More
recent studies do exist, cf. e.g. [39-42]; however, just as in [38], the questions dealt with are of a quite
different character.)

To explain the key difference between a second-order ODE or discrete difference equation and the
second-order A AE (3.30), we recall that the solution space is two-dimensional in the former context,
and that the Plancherel problem is solved by the Weyl-Kodaira-Titchmarsh theory. In contrast, for
the A AE (3.30) even the existence of any solution is a priori unclear. However, this problem can be
solved by invoking the extensive lore gathered mostly in the 19® century. Specifically, solutions can
be constructed by recursive procedures [38]. Unfortunately, such solutions are often badly singular;
even patural boundaries can easily occur. But the existence of even one non-trivial solution E(g, 6)
entails the existence of an infinite-dimensional solution space. Indeed, for any F(gq, ) with period i 8
in g the function F(g, 6)E(q, §) is another solution. As a more restrictive fact, we may mention that
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the solution space is a two-dimensional vector space over the field of i 8-periodic functions [38], but
all of these results fall far short of settling the key question mentioned above.

A closely related question is: How can one turn the 4 AO (3.26) into a self-adjoint operator on X?
Again, we have no general answers to offer. Recall in this connection that the operator —id/dg on the
dense domain C§°((0,00)) C3( is the standard example of a symmetric operator without self-adjoint
extensions. Thus, even for the simple 4 AO

T;p = exp(—ipBd/dg) Be(0,0) (3.33)
an interpretation as a self-adjoint operator on JCis problematic.

Having provided some context, we are now prepared to present some explicit answers to the above
question for the Iy and IL, cases. First of all, it so happens that the answer for the N =2 L4 case
(obtained by taking v—0 in (3.26)) can already be found in the literature (once one realizes where to
look). To substantiate this assertion, we invoke the (known) eigenfunction transform for the II,, Ham-
iltonian

- d? 1
=-—7+ -)y—=
pr R { ol 50 g

-

(3.39)
whose kernel reads

) ety 1. L(g —iq/BX(g +iq/B) :
EBgiq0) =2 "Tg+7) ' (shpoy T(—ig/B)(ig/B) r

FiG@+ig/ B S5 —ig/B), g +5; —sh*BO),  g,6>0. (3.35)

The crux is, that the contiguous relations for the hypergeometric function and the A4AE
T(1+z)=zT(z) entail that the function (3.35) satisfies the A AE (3.30). Moreover, for g=% the opera-
tor & defined by (3.31) extends to an isometry from JC onto ¥ by virtue of the Weyl-Kodaira-
Titchmarsh theory. Therefore, the above key question has an affirmative and explicit answer for the

We conjecture that the N >2 existence question for the I regime has already been answered in the
literature too. Specifically, we expect that the II,, eigenfunctions of Heckman and Opdam [34,35] are
joint eigenfunctions for the commuting Iy operators, acting on the spectral variables. More in detail,
this should hold after an obvious similarity transformation turning the Lebesgue measure used here
into the Plancherel measure used in harmonic analysis, and after a suitable normalization of the
dependence on the spectral variables. (Also, we should repeat at this point that the Plancherel prob-
lem has only been solved for the group values of g.)

Of course, what is being said here, is that we expect the duality properties of the classical level to
survive quantization, cf. (2.53). For the arbitrary N I, case this conjecture can easily be verified for
the group values of g: It amounts to the fact that E(g, )= E(f,q). Furthermore, for N =2 this self-
duality property is evident without restriction on g. Indeed, then the desired isometry is in essence the
Hankel transform, whose kernel depends only on the product g6.

Similarly, we expect the Il transform to satisfy

E(B,v.g:9,.0) = E(v,B.g:0,9) (3.36)
This holds true for all cases where we have found explicit solutions. In particular, it holds when
g=M+1=123,--- (37

For these g-values the following functions solve the 4 AE (3.30) and have the self-duality property
(3.36):

M
Fu(g, 6) = |4 (vq)4 (BO)|exp(ig8 — Mvg — M ﬂﬂ)u}_]o( =)' Qexp(2evg +21 86) (338)
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Here, the function 4 (x) and the matrix Qi depend on v and 8 only via their product
a=pv (3.39)
Hence, self-duality amounts to Qy; being symmetric. Explicitly, one has

Ax) = ﬁ[Zsh(x +ija)]! (3.40)
j=1

OQu=expliaM(M+1)y2) 3 exp(=2iali,+ -+ +i])

I<i < -+ <y <M

exp(—-2ia[j1+ s +}ID (3.41)
—M<j,< - <j<M
Jee{—M+k, ..., —1+kk}

(Here, empty sums equal 1 by definition, so that Fy(q, f)=exp(ig0), e.g.) We have not found a mani-
festly symmetric formula for Q. However, it is easy to check symmetry for small M, and we shall
prove symmetry for arbitrary M elsewhere, as well as the claim that Fy(q, 6) solves the 4 AE (3.30).
_ We shall also omit the proofs of the assertions that now follow [43]. First, not only Fy,, but also
F4 solves (3.30). Second, the real-valued kernel

Eu(g.0) = Qm™*(—)* " Fu(g, )~ (~Y*Fu(g. O, MeN (42)
defines an isometry &, from % onto % for any a€(0,7/M], thus solving the Plancherel problem
posed above, cf. (3.30)~(3.32). Third, the operator

GufXg) = @u) H(—iM*! [dOFy(4, 0/ @), feL’R), MeN (3.43)

preserves parity and amounts to &, on the subspace L*(R), of odd functions. However, %, is not
isometric on L2(R),, even though the even kernel has properties similar to the odd one: It has in
essence the same plane-wave asymptotics for |g|—c0, is real-analytic on R, and solves the self-adjoint
A AE (3.30). (In fact, its deviation from being an isometry can be explicitly described.)

3B3. Soliton scattering. As mentioned in the previous subsection, a linear combination E (g, §) of the
functions (3.21) solves the Plancherel problem for the group values of g. Specifically, one may take

E@O =003y TI uGO-0)* II uCGO—6) *E.q0) (3.44)

oeSy . i<j_l - l<j_‘
e @<a'() o (i)>a (f)
where u(f) is the two-particle S-matrix,
explin(1—g)] (L#%)
2 h:
u) = | LUH20/0T(E —2i0/p) L) (3.45)

T(1—2i6/w'(g +2i6/w)
__TQio/w .
T~2167y) PR 08/4] (Vi)
Morg generally, for any g=% the Heckman/Opdam function with the same structure is the obvious
candidate for an isometry from I onto IC Reading off the S-matrix from (3.44) according to the stan-
dard recipe of formal scattering theory, one finds that S is the unitary multiplication operator

s®= II wG@-6)) (3.46)

1<i<j<N

To show that the I, IT,, and VI, systems are quantum pure soliton systems as defined in Section
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3A, one would have to prove that the wave operators &. exist, that they have range J( and that
S=83'6_ is given by (3.46). We expect that this is true for any g=%, the kernels of &.. being given
by the incoming and outgoing eigenfunctions

E.(q.0) = E@Q6)SO™ (347

when one takes as comparison operator the generalized sine transform (3.25).
Let us now turn to the relativistic cases I,y and Il4, taking N=2 from now on. Using the known
asymptotics of the I'-function and the hypergeometric function, one obtains from (3.35)

u() = explin(1—g)] () (B48)
Continuing with the Il case, we obtain
M .
= (it Sh(Botika) -
w® = (M “3e9—ica) g=M+1 () (3:49)

from the explicit transforms (3.38)+3.42).
We can also determine u for arbitrary g, provided some assumptions are made. Suppose E(g, ) is a
solution to (3.30) with asymptotics
E(g,8) ~ (2m)™*[u(8)* exp(ig ) —u(8) *exp(—iqb)], g~ (3.50)
If we assume in addition that E is self-dual (i.e., that (3.36) holds true), then it follows that E satisfies
an A AE in 8, too. Specifically, one must have

SHE(q,0) = chvgE (g, 6) (51)

where H is the 4 AO dual to (3.26),
H=f-OTf+ @+f+OT_of-®) (52)
_ [smao [ 1.53

Let us now consider (3.51) for g—oo0, using the asymptotics (3.50). Comparing leading terms, it fol-
lows that u () satisfies the 4 AE

u(@+3)
— - F@ (3.54)
u(@—w)
where
F@) = £ =5 6+5) @55

The point of all this is, that first-order A AE of the form (3.54) can be solved explicitly for large
classes of right-hand sides. Moreover, the solution is unique when certain analyticity requirements are
imposed. In particular, for the special case just encountered, we find [44] that the solution satisfying
u(0)=1 is given by

= exofy; [ 4% Shl@—x shir—mx
u(f) = exp[2i oj sha v sin2Bx 0] (3.56)

provided the parameters

a=pr="3pu r=ag=—iz (357
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belong to
R = ((a7)eR?|ae(0,27}, 7—ae[0,7]) (3.58)

The S-matrix (3.56) has various remarkable properties that do not meet the eye. For instance, it is
an elementary function for a dense set DCR. In pan.iwlar, one has

_ sh(B0+ika) = sh(md/v +ilm*/a)
u®) = (= )~+LH sh(Bf—ika) ;= H sh(m/v — il /) (59

for points in the set
@ = ((@n)eR|r = (M +1)a—Lx, M>1, L>0} (3.60)

which is already dense. For (a,7)eDD, there exist elementary self-dual solutions to the 4 AE (3.30)
with the asymptotics (3.50), (3.56). However, the corresponding transforms are not isometric, in gen-
eral. To date, we have not been able to prove or disprove the existence of self-dual periodic multi-
pliers that correct this. On the other hand, a natural generalization of the Harish-Chandra c-function
does exist for any (a,7)€R [44).

3C. SYSTEMS RELATED TO QUANTIZED PURE SOLITON SYSTEMS
3CI. Systems with solitons and antisolitons. The operators associated with the II and Il,d cases are
obtained from the commuting operators of the II,, and IIy cases via the substitution (2.78). Since
this amounts to an analytic continuation, it is obvious that the former operators also commute (as for-
mal PDOs and A AOs, resp.). For special values of g the commuting II,;, operators can be tied in with
harmonic analysis on pseudo-Riemannian symmetric spaces. However, even in these special cases
much less is known concerning the joint eigenfunctions than for the II,, case. In particular, one is still
far removed from a verification of the picture of factorized scattering pertaining to the II,. systems.
This picture is taken for granted in the physics literature (cf. e.g. [45]), and will now be summarized.
First, recall we have already discussed the corresponding classical situation in Subsection 2C1. The
multi-channel scattering described there is believed to persist at the quantum level (for g>1). How-
ever, in any channel with asymptotically free solitons and antisolitons (from now on s and s, resp.)
there occurs a key difference with the classical case: an ss collison leads to a non-zero reflection for
g &N. Because it is still assumed that a multi-body scattering amplitude can be written as a product of
2-body amplitudes corresponding to an arbitrarily chosen temporal order for the 2-body collisons
involved, the product must be independent of this choice. Consequently, one obtains constraint equa-
tions for the ss and s reflection coefficient 4 and the s5 transmission and reflection coefficients ¢ and
r. These cubic equations are the well-known Yang-Baxter equations, and they are indeed satisfied for
the functions u,t and r of the N =2 case. This is a consequence of the relations

- sh(r8/v)

(6) h(ing —m8/v) u(8), 6>0 (3.61)
- sh(img)

r(9) sh(img —877) u(), >0 (3.62)

which can be verified from the s5 eigenfunction transform. (The latter is obtained by taking a suitable
linear combination of E (v,g;0,g=in/2v), cf. (3.35).)

Consider now, more generally, the ILy case. We expect that the picture just sketched for the I,
case apphs here, too, with #,r and u still related via (3.61) and (3.62). In particular, for the solutions
detailed in Subsection 3B2 we have geN, so that (3.62) says r =0. This is indeed the case for the s5
eigenfunction transforms following from (3.38)-(3.41).

The physlcal fact that the interaction between s and ¥ is attractive for g>1 finds its mathematical
expression in the occurrence of bound states. For the Il operator
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Hz = — 7‘;32— ~v2g(g —1)/chPvg (3.63)
these have energies

E, = —vVg—(+DP;, n=0,...,M-1, ge(MM+1] (3.64)
and the corresponding wave functions read

Yn(q) = P,(ishvgi(q), n=0,... M—-1, geMM+I1] (3.65)
Here, P,, are Gegenbauer polynomials, and the ground state may be taken to be

Yo(g) = [2chvg)'™8 (3.66)

Since one has

Yo(g) ~ explvig|(1—g)] lgl—e0 (367)
the functions y,(g) are indeed in L*(R).

For the II,; Hamiltonian
__ |chv(g—iBg) : chv(g +ifg) : _
Ha [ chg TTM chvg *E=h) -

the odd and even eigenfunction transforms can be found explicitly for g =M +1€N via analytic con-
tinuation of the solutions (3.38), and their isometry properties are known [43]. There are M bound
states and the ground state wave function can be taken to be

M
Ylg) = q|2ch(vq +ija)”! (369)
=

More generally, explicit square-integrable and pairwise orthogonal eigenfunctions of the formal
AAO (3.68) can be found for g > 1. The ground state, normalized to satisfy (3.67), reads [44]

sh(r—a)xchrxcos2xvg _ a(r—a)
xsharxshax ash?ax

-]
Yo(g) = expl(a—7)/m+ [dx 1 (3.70)
0
and then the excited states are given by (3.65), where the P,(x) are again polynomials of degree »n and
parity (—)". (These polynomials are in essence g-Gegenbauer polynomials, cf. Subsection 3C2 below.)
As the generalization of (3.64), we obtain the eigenvalues

E, = 2cos(r—(n+Da), n=0,....M—1, ge(M,M+1], 'r=ag<a+% 3.71)

The function (3.70) is an elementary function for a dense set in a region obtained by shifting (3.58).
In particular, when r=%/2 (3.70) can be written

o(g) = (sh2vg/shmg/B)’ r=a/2 (372
and when 7=(M + 1)a (3.70) reduces to (3.69) [44].

3C2. Sutherland type systems and their duals. Just as for the II,, and Il cases, commutativity of the
quantized Hamiltonians associated with the regimes IIL,;, IIl,y and ITL. is clear from the fact that
these operators can be obtained by analytic continuation from the II,, and Il regimes, resp. We
continue by sketching the state of the art as concerns their joint eigenfunctions. To this end it is
expedient to discuss the N =2 case first.

Omitting the center-of-mass motion, the relevant operators and their duals read

2
H=-— 7‘;; +v2g(g — 1)/sintvg (I1L,,) 673
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H=[1+ l’§ T, [1— %r-&-(v—a—v) (11y) (3.74)
_ (sm@-igp) ], [sma@+is)T, o _
H= sinvg ]'Tm { simg +B--B (L) (3.75)
f= MT?-. lmr+(v—>—v) dL) (76
L
= sinv(g —Bg) L
= [ T [ o r+08 (MLey) G
[M——ﬂ 7, [—s"—“%:ﬁﬂrﬂv_)—v) @Ls,)  (78)

Here, we are taking B8,ve(0,00) in all cases, in contrast to Subsection 2C2. The change g’—>g(g -1
in (3.73) (as compared to Subsection 2C2) is a natural consequence of the IlLy—IIL, transition at
the quantum level, cf. Subsection 3B1. Recall also that T; and T; denote translation of ¢ and 6,
resp., cf. (3.27).

For g=3/2 the operator (3.73) is essentially self-adjoint on C§° ((0,7/v)) C3(, where

9 = L*([0,#/v),dg) 3.79)

Its closure has purely discrete spectrum {v*(g +n)’jneN} and a corresponding basis for I can be
taken to be

¥n(g) = Pu(cosvgin(q) (3.80)
where the P, are Gegenbauer polynomials with weight function

(gl = (sinvg)® (381)
Correspondingly, the dual space may be taken to be

L= 1G), G = (vg +wnjneN} (3.82)

and the duality of the classical level is preserved. Indeed, when one discretizes the §-variable in (3.74)
by taking #€G, then the function

E(g,6,) = ¥u(9), 6, =vg+vn (3.83)

is an cigenfunction of H with eigenvalue 2cosvg by virtue of the three-term recurrence relation of the
(suitably normalized) Gegenbauer polynomials.

For the I,y regime this state of affairs persists, in essence. The eigenfunctions are again of the
form (3.80); the weight function (3.81) and its associated orthogonal polynomials should be replaced
by certain ¢-analogs. Specifically, the ¢-Gegenbauer polynomials studied in [46,47] arise in this way.
(This was pointed out to the author by T. Koornwinder [48].) The parameters employed by Askey and
Ismail [46] are related to ours by

qu = exp(=2Bv), By =exp(—2pvg), Ay =g (384

Hence, the limit qur—>1 may be viewed as the nonrelativistic limit c—co. Again, the duality of the
classical level survives quantization: The three-term recurrence relation for the (appropriately normal-
ized) g-Gegenbauer polynomials implies that the generalization. of (3.80) is an eigenfunction with
ag;)valuekoqufortbe operator (3.76), viewed as a discrete difference operator on the Hilbert space
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An interpretation of the operators (3.77) and (3.78) as Hilbert space operators is less straightfor-
ward. We see only one sensible way to do this without loosing formal self-adjointness: Both IC and 3C
should be finite-dimensional. (This can also be understood from the fact that the natural classical
MLy, phase space is a bounded subset of R =2 [8].) More in detail, it appears inevitable to impose
a quantization constraint on the parameters 8,v,g€(0, o0): They should satisfy

rtla=2w, a=f, 1t=ag leN’ (3.85)
and then the Hilbert spaces are given by

% = X(G), 9 = 1*(G) (3.86)
where

VG = BG={r,1+a, ..., 7+la) = M) (3.87)
Indeed, restricting g and 6 to the points in G and G, resp., given by

gm =Bg+Bm, 6,=vg+wn, mn=0,...,] (3.88)

the operators (3.77) and (3.78) have a well-defined self-adjoint action on I and 56, resp.
It so happens that the eigenfunctions of the operators just defined are again already known, in
essence. Indeed, now one has

e
E(gm.8,) = [W(gn)w(B8,))’ Pu(cosvg,), mn=0,...,1 (3.89)
where w is the weight function
sin(r+ka) 2! sin(l —j)a ,
sint jog sin(j + Da
on M(l,7) and the P, are corresponding orthogonal polynomials. These may be viewed as special

cases of discrete g-polynomials and corresponding weight functions obtained in [49]. Specifically, the
relation of the Askey-Wilson parameters [49] to ours can be taken to be

wrtka) = k=0,...,1 (3.90)

N-l, g-oexp(ia), a=b=—c=—d-exp(it—ia/2) (3.91)
and then one obtains
Pn(i(m))—p,(2exp(i T)cos(T+ma)) = cPy(cos(t+ma)) (3.92)

where c is a positive normalization constant chosen such that (3.89) defines an orthogonal matrix. The
self-duality of the classical Ill, , regime is again preserved under quantization, since one has [49]

P, (cos(r+ma)) = P, (cos(r+n a)) (3.93)

For geN the desired eigenfunctions for the N =2 Illy and IIL, cases can also be obtained via
analytic continuation of our explicit Il solutions (3.38)-(3.42). The representations of the above-
mentioned orthogonal polynomials that arise in this way are new. In this connection it is to be noted
that the various representations for the g-Gegenbauer polynomials in terms of basic hypergeometric
functions (in which the index n can be taken to be complex) do nor admit a continuation to the IIy
regime. The difficulty at issue here has already been discussed in Subsection 3B2, in another guise:
One would have to factor off (unknown) periodic functions that obstruct analytic continuation.

Next, let us briefly sketch what is known concerning arbitrary N eigenfunctions. First, the work of
Heckman and Opdam [34-37] mentioned before yields (on specialization to Ay-)) a complete solu-
tion for the III,, case. The joint eigenfunctions can be written (in the center-of-mass system) as pro-
ducts of factorized weight functions and polynomials in N —1 variables. The Plancherel problem is
now much simpler than for the II, case, since one is dealing with orthogonal polynomials. It has
been solved (for arbitrary root systems) by Heckman [35].
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ers to (most of) the analogous questions for the IIl,y regime can be fpund in recent work
byT}\]dccBn::ald [505. He a.lf:o considefs arbitrary root systems, and for 4y, bis fundamental shifg
operator may be viewed as a transform of our operator §; (with g, + - - - +qv=0). ’F’he structure of
the joint eigenfunctions following from his work is the same as for the III,, case. .(Hls work and the
connection to our commuting Il operators were pointed out to us by T. Koornwinder [48].)

As concerns eigenfunctions for the Iy , case with 2<N </ (recall (2.94)), there are only specu-
lations: We expect that they can be obtained via analytic continuation of McDonald’s polynomials,
and that they will turn out to be self-dual. )

Finally, we would like to describe some results by T. Koornwinder that have a bearing on the III,
eigenfunctions. First, he has proven [48] that they have the duality properties expected ffom t_he' classi-
cal level, by means of an induction argument which applies to all root systems coqmderqd in [50].
Second, he has tied in the g-Legendre polynomials (i.e., the g-Gegenbauer po!ynoxmals with g =1)
with Woronowicz’ impressive work on compact quantum groups [51-53]. Specifically, .he,has shown
[54] that they may be viewed as zonal spherical polynomials associated with Woronowicz version of
S,U(2) [51,52], as a natural g-analog of the relation between Legendre polynomials and
SUQ)==S,U(2). However, the definition of ‘spherical’ is no longer unambiguous fqr q€ (0,1) [54]. 1t
can be expected that McDonald’s g =% Ay, polynomials may be similarly tied in with harmonic
analysis on S, U(N) [52,53].

3C3. Elliptic systems. As already mentioned, there is no guarantee that one can find a quantization of
a classical integrable system for which commutativity is preserved. However, no ordering ambiguities
occur when one quantizes the symmetric functions of L(IV,,), cf. (2.96), and the resulting operators
do commute. This is proven by Olshanetsky and Perelomov [5] in the same way as sketched above for
the Il case.

Next, let us consider the IV, case. It so happens that there again exists a factorization of the

potential yielding commuting operators S, . ..,Sy. This factorization involves the Weierstrass o-
function. Specifically, if one replaces (3.6) by
fx(9) = olg=£v)/olg), Y=ifg (3.94)

then the operators (3.5) commute. This follows from the fact that the functional equations (3.7) still
hold true when sh is replaced by o [2].

The latter functional equations are the most general expression of complete integrability for all of
the systems considered in this survey (except possibly for the quantum IV, systems, cf. below).
Indeed, involutivity for the classical IV, case (and hence for all classical cases I-VI) finds its expres-
sion in a sequence of functional equations for the 9-function that arise when one divides the o-analog
of (3.7) by p and sends p to 0. (In fact, this is the only known proof of Liouville integrability for the
IVyy case, thus far.) Moreover, quantum commutativity for the relativistic cases follows by taking lim-
its (the Vg case will be detailed in the next subsection). This entails commutativity for the cases II,,
and VI, by virtue of the reasoning in Subsection 3B1. Then the cases I, and I, follow from II .
The V,, case will be dealt with in the next subsection.

Unfortunately, we have no complete proof that commutativity for the quantum IV, case may be
obtained as a corollary. When one replaces S)(8) in (3.8) by Z,(8) (given by (2.101), (2.102)), then the
difficulty is that the coefficients of the T}, (cf. the reasoning below (3.15)) might be non-zero con-
stants, due to functional relations between the various functions involved. (Note that any such con-
stant must vanish when w or ’ is taken to o0.) However, for k =1,2,3 one does obtain n, =k, cf. the
explicit formulas (3.33)-(3.35) in [2], and we believe that, more generally, n, =k for k<N.

If one could prove this conjecture, then one would obtain (3.16), (3.17). Note, however, that the
k=2,3 formulas just cited entail that A and A% are not equal to the second and third symmetric
function, resp., of the quantized Lax matrix (2.96) with g replaced by [g(g — 1)]"/2.

At this point we would like to repeat that the fundamental role of the functional equations (3.7) for
the o-function pertains to the root system Ay_; considered throughout this survey. However, the
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obvious conjecture is now, that it should be possible to generalize the functional equations to other

E’;x;t] systems, thus yielding quantum and classical integrable systems generalizing those considered in

Finally, let us turn to explicit eigenfunctions. Since (3.19) still holds at the elliptic level (recall

(3.94.)), we shall take g~0,1. Then the eigenfunctions are only known for N =2 and £§=234,---.
Specifically, the relevant IV, operators read

d2
H, = i +g(& —D)%q), £=23, - Vi) (3.95)
Tr;l;;ir eigenfunctions are the well-known Lamé functions [28]. The relativistic 4 AOs generalizing H.,

b= [oa—igp]?
[ o(q) Tn’

lfqr thm AAOs we have found explicit eigenfunctions reducing to the Lamé functions in the nonrela-
tivistic limit B—0. Details concerning these functions and their Hilbert space properties will appear
elsewhere [S5).

AT 1pomp gm23 w69

3C4. Periodic Toda type systems. When one quantizes the Hamiltonian (2.106) and the symmetric
functions of the Lax matrix (2.107) associated with the periodic Toda systems V,,, then the resulting
operators commute. This can be proven in the same way as for the case II;; [S]. For the relativistic
case V4 one encounters the same ordering ambiguities as for the case VIy. However, the same ord-
ering choice as made in (3.18) (but now with (2.109), (2.110) in force) yields commuting operators
H.S,, . ..,Sy. This can be proven directly [3], but it is also possible to obtain this as a corollary of
the quantum IV,q commutativity. Indeed, we may replace the o-functions in the quantum IV,q opera-
tor S; (given by (3.5), (3.94)) by the rhs of (2.111) with the first exponential omitted, since these
exponentials only give rise to an overall multiplicative constant in S;. If we then substitute (2.112) and
(2.118), and take w—>00, we obtain the V, operator (3.18); The ‘VI4 part’ comes from the sh-factor
at the rhs of (2.111), whereas the infinite product supplies the extra terms needed to turn the Vi
into the V4 operator. In a similar fashion, the o-analogs of the functional equations (3.7) turn into
the functional equations expressing V,y quantum commutativity [3].

When one substitutes (2.108) in the V.4 operators and takes 7 to 0, then one obtains the Vg
operators, as is easily verified.

The V,, transition involves more work. When we start again from (3.8), with S(8) replaced by the
Viu operators derived from Z,, cf. (2.126), then the reasoning below (3.15) can only be followed til the
point where interparticle distances are taken to co. There is no analog of this for the V,y case, since
the functions ¢; =exp{u(q; —g;-1), j =1, ..., N, cannot simultaneously go to 0. Indeed, this is clear
from the relation e, - - - ey =1. Even so, we can again obtain a contradiction, as follows.

For n, <k all terms in Ag"‘) are of the form P(ey, .. . ,ex)3] - - - 3, where 0<<|a|<n;—1 and P
is a polynomial that has no constant term. But the coefficients of the terms Tj; must be constant by
virtue of the arguments below (3.15). Since these coefficients are of the form
P(ey,...,exy—1,1/e, - - ey—;), where P is a polynomial without constant term, we must have
P(xy, ... ,xN)=2"‘f_lc](x1 - -+ xyY. But the minimal order in B at which such contributions to
A(B) can arise equils 2N. Since n, <k <N by assumption, we arrive at a contradiction.

The upshot is, that we must have n, =k, and hence the desired relations (3.16), (3.17) follow. More-
over, we may conclude that A% equals the k-th symmetric function of the quantized Lax matrix
(2.107). Indeed, the difference commutes with H,, [5] and consists of terms that arise when partials
act on potentials. Therefore, the above arguments can be used once more.

Finally, let us describe the state of the art as regards joint eigenfunctions. This is quite similar to
the nonperiodic case: For V4 one is dealing with non-self-adjoint operators and nothing is known,
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whereas for V,, the eigenfunctions have been found and studied in considerable detail (by Goodman
and Wallach [56]).

4. CONNECTIONS WITH INFINITE-DIMENSIONAL INTEGRABLE SYSTEMS

4A. PREAMBLE

In recent years it bas been widely advertised that there are intimate relations between infinite-
dimensional integrable system theory and various subdisciplines of mathematics and physics that
would appear to be rather far removed from this area at first sight. The latter include the representa-
tion theory of Kac-Moody and Virasoro algebras and generalizations thereof, soluble models in two-
dimensional classical and one-dimensional quantum statistical mechanics, quantum group theory, knot
theory, conformally invariant field theories, string theories, . . . . A recent ‘flow chart’ of the intercon-
nections between the various fields can be found in [57]. This flow chart is quite extensive and the
fields it covers are currently investigated by large numbers of researchers.

Our purpose in this chapter may be phrased as adding yet another box to the flow chart of [57], for
which we propose the label ‘Finite-dimensional Soliton Systems’. Some of the contents of this box
have been sketched in the previous two chapters, but it should be repeated that we have restricted
ourselves to the root system Ay —;, absence of integrable external field couplings and internal degrees
of freedom, and zero temperature. We shall continue to do so in this chapter.

4B. THE CLASSICAL LEVEL
The Iy systems are intimately connected to the pure soliton solutions of various soliton PDEs and
infinite soliton lattices. The latter include the sine-Gordon equation, the A{"-reductions of the KP
equation (yielding KdV, Boussinesq, . . . for n=1,2, - - - ), the modified KdV equation, the infinite
Toda lattice, . . . . Similarly, solutions describing solitons, antisolitons and their bound states can be
obtained from the Iy systems. The latter situation is discussed in {7]; here, we shall restrict ourselves
to the pure soliton case [1,58].

We begin by recalling that we have already considered quite general one-parameter flows associated
with the Il systems, cf. (2.63)-(2.69). Here, we have occasion to study two-parameter flows. Thus, we
now work with

AL Lz239,+th'B)~xhy'B1), . . ., qn +th'(Bn)—xh'(Bx).6) @1
(where hg,h, are real-valued) instead of (2.69). If we then set

H; = Trh(nL) j=01 42)
and

q(6x) = exp(tHo — xH  Xq, Oont. (43)

(where conf. denotes the projection on configuration space), it follows as before that the eigenvalues
of (4.1) are given by explq,(t,x)], . . . , exp[gn(t,x)]. Therefore, one may conclude

In(det(1 +4)) = f"_,]n(l +explg;(6,x)D (4.4
i=1
~ N
Tr(Arctgd) = jglArctg(exP[q,(r,x)l) 45)

The crux is now, that the functions at the rhs or certain derivatives thereof are pure soliton solu-
tions to the above-mentioned soliton PDEs for an appropriate choice of 4o and h, and of the ‘cou-
pling constant’ z. (For infinite lattices one should take x €Z.) The details are spelled out in [1,58].

As a consequence of the formulas (4.4), (4.5) one may view soliton solutions to the above-
mentioned infinite-dimensional integrable systems as linear superpositions of single soliton terms.
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Each of these terms gives rise to a uniquely determined space-time trajectory x;(), obtained via the
requirement q,(t, x;(¢))=0. The asymptotics of these trajectories is the same as for the soliton solutions
[58,7). In this way an intuitive picture suggests itself of solitons being deformations of an elastic
medium that conceals an underlying point particle dynamics.

We proceed by discussing an issue that is relevant to the problem of quantizing those infinite-
dimensional dynamical systems whose particle-like solutions can be obtained from the N-particle sys-
tems discussed in Chapter 2. This concerns Hamiltonian formulations of the Inverse Scattering
Transform (IST) for the former systems. Such formulations lead to soliton action-angle coordinates
that can be compared to the variables ,6, cf. [1, Subsection 6D]. The result is, that the angle vari-

ables coincide (in essence) with gy, . .. ,qy for the (m)KdV, sine-Gordon and Toda cases, whereas
6y, . .. ,0y coincide with the soliton action variables only for the mKdV and sG cases. For the KdV
and Toda cases the action variables of [59,60] and [61,62], resp., are given by
p= ap(ﬁj) (KdV) 4.6)
P = —2cth() (Toda). @7

sgecnfy and discuss the soliton S-map for these two cases, it is expedient to first identify @7
with @ Q in the IIy equations (2.74)«(2.77) (via reversal of ordering). Moreover, we put 8=p=1
in the latter and denote the S-map on 27 =~ thus obtained by $(z). Then the soliton S-map for the
KdV and Toda cases (with the parametrizations (4.6) and (4.7), resp., in force) is given by S (i7/2), cf.
[1). Now one readily verifies that S(z) is canonical w.r.t. a symplectic form

N -~
= Sdndp @) @89
=1

if and only if p(6) is linear in 4. In particular, the KdV and Toda N-soliton S-map S(in/2) is not
canonical when one employs ¢; and p; (given by (4.6) and (4.7), resp.) as canonical coordinates on the
scattering data. (In the Toda case the j-th angle variable used in [61,62] is not equal to g;, but the
difference depends only on §;, so our arguments do apply.)

The violation of canonicity just established may not look startling at first sight. However, it does
appear bizarre when viewed from another perspective. Indeed, one would be inclined to expect that
the asymptotics of a Hamiltonian (and hence canonical) flow is coded in an S-map that is also canon-
ical. (On a personal note we might add that we were very puzzled when we noticed the non-canonicity
of the KdV soliton S-map some ten years ago. When we asked H. Segur for advice, he was not puz-
zled: He simply did not believe us!)

- We would like to clarify this issue here, since it has a bearing on the soliton = particle correspon-
dences sketched above. (We should mention at this point that the non-canonicity of soliton S-maps
for the K4V, Toda and finite-density nonlinear Schrédinger (NLS) cases has been observed and dis-
cussed in [62,63]. However, we feel that both the diagnosis and the remedy presented in [63] are far
from compelling.)

First and foremost, it should be recalled that neither the IST nor the soliton S-map involve any
Poisson or symplectic structures. Such a structure is needed only when one wishes to write the non-
linear evolution in Hamiltonian form. More specifically, the equation of motion gives rise to a vector
field X on the manifold @ of Cauchy initial values, and the structure then ensures that X may be
viewed as the vector field associated with a Hamiltonian H on . Now the direct transformation ¢
from © onto the manifold @ of scattering data transforms X into a vector field X on £, whose flow is
linear on one half of the variables coordinatizing & and trivial on the other half, In such cir-
cumstances there are uncountably many different symplectic forms @ on @ such that X is the vector
field arising via & from a Hamiltonian H on Q. A finite-dimensional example (which encodes the KdV
N-soliton situation) may be in order: With £ equal to (2.51) one may take

N 0/
X= zexp(w,)a», o= 2](0 )dq,/\daj, H = 2 fduf(u)exp(3u) 4.9

JjFl-
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for any nonvanishing f such that the integral makes sense.

Of course, one wants & and H to be smooth in a suitable sense, but in the absence of a clear picture
of the topology of the scattering data manifold @ it is impossible to pin down just what restrictions
this entails. In fact, to proceed we shall also assume that @ is ‘smooth’. (Again, this has not been
sorted out with the standards of rigor that are taken for granted in modern global analysis, as far as
we know.) Accepting this, it is obvious that the pullbacks under @ of the above-mentioned forms &
and Hamiltonians H give rise to symplectic forms » on £ (since ‘d commutes with pullback’) and
Hamiltonians H that all lead to the same vector field X on  one started with.

The upshot is, that there exist uncountably many different Hamiltonian formulations of the IST. Let
us now explain why the soliton S-map need not be canonical for any of these formulations, a priori.
This becomes evident when soliton scattering theory is formulated in a mathematically precise way.
Such a formulation should involve a comparison map J: @— that identifies a point in Q with N
bound states and vanishing reflection with a function in O that equals a linear superposition of N
one-soliton functions depending on the N energies and norming constants. (Cf. {12, Subsection 2F] for
more details on this picture.) Since one is comparing two very different symplectic manifolds
(intertwined by the IST), it is in fact extremely optimistic to expect that J will be asymptotically
canonical, in the sense that the wave transformations in the two-space scattering theory picture [10,12]
not only exist, but are also canonical. However, if the wave maps are not canonical, then § is not

likely to be canonical.
On the other hand, whenever one succeeds in parametrizing soliton solutions with angle parameters
41, - - -,y and action parameters 8, . . . ,8y in such a way that the soliton S-map is given by S(z),

—iz€(0,7/2], then the S-map is canonical w.r.t. the symplectic form (4.8), provided one takes p(6)
linear in 6. Then the soliton part of the Hamiltonian is (in essence) uniquely determined (cf. (4.9) for
the KdV case). Of course, the radiation should be taken into account as well, but it so happens that
this can be done in a very natural way for the cases at hand.

Indeed, let us show this first for the KdV case, where we need

- 1 X . N
H=-3 2}1)}'2 =3 12]“13(39;) (Kdv) (4.10)
i= =
when we use the form (2.52), cf. (4.9). This corresponds to the soliton part of the Hamiltonian
H = [dal(x) (KdV) @.11)

on &, ie., the Hamiltonian —7, in the well-known hierarchy. Therefore, one gets a smooth extension
of H to all of 2 by picking it equal to —I,°6, where &=®~! denotes the IST. The requirement that
the Hamiltonian H thus obtained generate the KdV evolution of the reflection coefficient (as found
via the direct transformation) now fixes the symplectic form on the radiation, in the following sense.
When we keep the customary angle variables g(k) (~ the arguments of the reflection coefficient), then
the new action variables p(k) are uniquely determined by the evolution requirement just made and by
insisting that

{oDpk)} = 8k =D, {Wk)3;) =0, y=¢,p, x=g,0. “.12)
Proceeding in this way, we find
alk) = (4K pll) (Kdv) 4.13)

when p(k) and (k) are given by [63, Eq. (8)]. With the symplectic form thus fixed, one readily verifies
that the complete S-map (solitons +radiation), as specified in [63, Eqgs. (21), (22)], is canonical. (Note
that the g, employed in lc. corresponds to —g;/2.) Furthermore, the higher flows in the hierarchy are
now generated by —1I, ., instead of Iy, (for n>0), whereas the Zakharov-Faddeev momentum
Hamiltonian I, should be replaced by
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P = — [dux) @.14)

(Here, the sign conforms to the sign in the KdV equation & — 6uu, +u,,, =0 employed in most of the
literature.)

The latter facts make it very plausible that the new symplectic structure on £ just defined coincides
with the ‘second Hamiltonian structure’ introduced by Magri [64,65] (up to a sign that corresponds to
the different sign of our angle variables g; compared to the angle variables used in the literature). The
reason that we are not sure that (minus) Magri’s structure results is that we are requiring that soliton
and radiation variables commute, cf. (4.12). To our knowledge, the relations (4.12) have not been pro-
ven for Magri’s structure; possibly, terms propotional to (k) are present. Such terms must occur for
the ‘first Hamiltonian structure’ (Gardner’s structure [66]), since otherwise blatant contradictions arise
[67]. (We feel that the presence of such terms is a highly undesirable feature of the Gardner choice.)

We can see only two drawbacks of the mew symplectic structure: It is far less ‘obvious’ than
Gardner’s structure (even when it does equal Magri’s structure up to sign), and it is not likely to
admit an r-matrix formulation, in contrast to Gardner’s structure (cf. [62, p.467]). However, in our
opinion these liabilities of the new structure are negligible compared to its assets: (i) By definition, it
decouples soliton and radiation modes; (ii) It gives rise to a canonical scattering map; (iii) It obviates
certain unphysical characteristics of the energy and momentum Hamiltonians associated with the
Gardner choice.

To substantiate the latter claim, we point out that the Gardner energy (momentum) has opposite
(the same) sign for radiation and soliton solutions. In contrast, the energy (4.11) is always positive (as
expected for any disturbance), and the momentum (4.14) is negative/positive for radiation/solitons (as
should be the case, since radiation/soliton solutions move from right to left/left to right [68]).

Next, let us consider the Toda case. When one combines [62, p. 504, Eq. (4.42)] with the parametr-
ization z;=1th(8;/2) corresponding to {1, Eq. (6.17)], then one obtains z}j=2/sh0j, cf. also [1, Eqgs.
(6.6), (6.18)]. Thus, the Hamiltonian corresponding to the choice (2.52) reads

- N N n
H = Sh})= - Sineth5) (Toda). (@.15)
j=1 j=
Again, there is an obvious way to extend to the radiation: If one compares with [62, p. 504, Eq.
(4.36)], one sees that H may be viewed as the transform of the ‘total elongation’ functional
H = —lim g, (Toda). (4.16)

n—c0

Therefore, we can proceed just as for the KdV case: We require (4.12) and then take
p6) = (25in’8)”" p(6) (Toda) @.17)

where p(f) is given by [62, p. 503, Eq. (4.28)]. This ensures that ¢(6) satisfies $=2sin6, as desired (cf.
[62, p. 504, Eq. (4.41)]). There appears to be no obvious candidate for the new symplectic structure on
 that corresponds to the symplectic structure on { just defined.

Admittedly, the new structure and the corresponding Hamiltonian (4.16) are not exactly the obvi-
ous ones for the Toda lattice. Possibly, the situation can be better understood by answering the analo-
gous questions for the relativistic Toda lattice, and then taking the speed of light to infinity. Again,
there are an ‘obvious’ Hamiltonian and symplectic structure that arise from viewing the lattice as the
N—>0o limit of the V, (or VIy) systems, cf. Chapter 2. Moreover, an IST formulation and N-soliton
solutions are known [29]. However, the soliton S-map has not been determined yet.

As we shall argue in the next section, the quantized nonlinear Schrodinger equation (NLS) may be
viewed (in more than one way) as a degenerate case of the quantized particle systems of Chapter 3.
We suspect that the classical NLS breathers (i.e., the solitons in the attractive and rapidly decreasing
case [62]) may be tied in with degenerate particle systems, too. However, their explicit space-time
dependence (as specified e.g. in [62, p. 132, Eq. (5.38)]) appears incompatible with (4.4) or (4.5). This
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also holds true for the repulsive finite-density NLS soliton solutions detailed in [62, p. 170, Eq. (8.33)]_

On the other hand, we have found a clearcut connection of the latter solitons to the ILy systems ag
the level of the S-map. Just as for the KdV and Toda cases, the soliton S-map is nof canonical w.r.t,
the symplectic structure arising via the r-matrix formulation (cf. [62, p. 266]). However, this can again
be remedied by changing the symplectic form on . Indeed, as the analog of the reparametrizations
(4.6), (4.7) one now needs

e (f.d. NLS). @.18)
Then the soliton S-map is again given by S(i/2) (as is readily verified from [62, p. 266]), and hence
is canonical w.r.t. the symplectic form (2.52). In the same way as for the KdV and Toda cases we now
infer that we should take
~ N N n
H = S —ph? = 3o’ /chf (f.d. NLS) 4.19)
j=1 j=1

as new soliton Hamiltonian, cf. [62, p. 264, Eqgs. (9.100), (9.101)]. Comparing to [62, p. 258, Eq.
(9.64)], it follows that H can be smoothly extended to radiation by taking

H = —xaly, (f.d NLS) (4.20)
as the analog of (4.11) and (4.16). When we now insist on (4.12), then we need
) = kw(w? —A%) "1 p() (f.d NLS) 421

with p(d) and @Q) given by [62, p. 254, Eq. (9.8)], in order to obtain the NLS evolution
P=AQ? —o?), cf. [62, p. 145, Eq. (6.51)}.

The state of affairs for the finite-density NLS case we have just sketched is surprisingly similar to
that for the Toda and KdV cases. The orthodox Hamiltonians and symplectic structures give rise to
non-canonical soliton scattering and an unwanted coupling between radiation and solitons, cf. [62, p.
257, p. 503] and [63], resp. However, there exist -a Hamiltonian H ‘lower down’ in the usual hierarchy
and a symplectic form @ on the scattering data manifold Q that are essentially unique when three
requirements are imposed: (i) The soliton and radiation variables should commute; (i) H and @
should give rise to the vector field X on O that follows from the direct transformation; (iii) The soli-
ton S-map should be canonical.

The acid test for the unorthodox structures obeying these requirements now reads: Is the complete
S-map also canonical? We have already seen above that the answer is ‘yes’ for the KdV case. We con-
jecture that the answer is affirmative for the other two cases, too. (It seems the complete S-map is not
known for these two models.) Even when this can be proven, the new structures and Hamiltonians
(4.16), (4.20) remain puzzling. Possibly, the need for a change of the ‘obvious’ structure and Hamil-
tonian arises from a rigorously controlled infinite volume limit. In this connection it should be
recalled that for nontrivial relativistic quantum field theories such limits always give rise to a unitarily
inequivalent representation of the canonical (anti}commutation relations (Haag’s theorem) and to a
drastic change in the dynamics. This analogy may appear far-fetched at first sight, but it should be
remembered that classical Hamiltonian systems can be formulated as quantum Hamiltonian systems
of a very special kind by using the Koopman formalism; as is well known, canonicity amounts to uni-
tarity in this formalism.

Of course, the correspondence between the pure soliton N-particle systems and the various soliton
PDEs and lattices mentioned above has no direct bearing on the IST for the latter systems. Moreover,
it cannot be extended to the radiation and ‘mixed’ solutions. (In this connection we would like to take
issue with the assertion that particle-like initial values are dense. The topology in which this is sup-
posed to be true is never specified, but if one exists, it has to be weaker than the L!(R)-topology-
Indeed, if V,—¥ in L'(R)®C* with ¥, reflectionless, then ¥ is reflectionless, 100.)

On the other hand, as far as soliton S-maps are concerned, the particle systems appear to be more
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general. When appropriately parametrized, pure soliton solutions to completely different-looking evo-
lution equations (including sG, mKdV, KdV, Toda, finite-density NLS, . . . ) all yield the S-map
S(iw/2) of the hyperbolic IIy systems, whereas the A{V-reductions of the KP hierarchy lead to the
S-maps S (iw/(n +1)) [58]. Moreover, the full panoply of particle-like solutions to the sG and mKdV
equations can be modeled when one includes the Il (z =in/2) particle systems [7].

In point of fact, there is also strong evidence that the particle-like solutions to the fully anisotropic
Landau-Lifshitz equation lead to an S-map that occurs in our systems. The systems just referred to
are the systems dual to the elliptic systems of Chapter 2, with y equal to «’. (Note this value is the
elliptic analog of the value z =i/2): In the absence of an explicit action-angle map for the IV case,
we do not know what these systems look like. This is a matter of considerable interest, and even more
so when the quantum situation is taken into account.

The evidence we have in mind is the fact that it is possible to parametrize the particle-like Landau-
Lifshitz solutions (as detailed in [69]) in such a way that the function c,, of [69] can be written

e = KUIQUK’; K, 2K)— 90, —by; K, 2K)] . “2)
Specifically, defining the elliptic modulus by

k = (1—b%/a%)%, a>b>0 4.23)
and substituting

k; = —ada(d,,k) XYZ-XXZ) (4.24)
or

k; = ~bnd(d,k) (XYZ—sG) 4.25)

in ¢y, one can verify that (4.22) holds true. Of course, these two substitutions must then be linearly
related, and indeed one can get from (4.24) to (4.25) by shifting §; over K. However, both are useful:
One has

lim ¢y = 56 ~8y) (4.26)

but the limit 5—0 can only be taken in the complete solution [69, Eq. (3.12)] when one employs
(4.24). This yields one of the two partially anisotropic cases, viz., the case where the two equal cou-
plings are greater than the third one. To handle the 5—0 limit when (4.25) is used, one must rescale x
and ¢ by a factor b, and then one can reach the particle-like sG solutions by proceeding as indicated
in [62, pp. 459460, Egs. (8.15)<(8.19)].

It remains to explain the connection of (4.22) to soliton and particle S-maps. On the soliton side,
the S-map seems not to be available in the literature. (We have not found any specification of soliton
action-angle variables, either.) However, from {69, Eq. (3.12)] it is very plausible that the shifts of the
soliton position parameters

- 1
g = Reg) +5 ([T cx) 4.27)
k)
are factorized, with two-soliton shift given by In(1/c);) (up to functions of the form f;(6)). On the
particle side, asymptotics as just described result from the eigenvalue asymptotics of
LAV,a)B,g,+1ay, . .., ov+tay),  ay<--- <a, jt}>o0 (4.28)

in the same way as sketched in Subsection 2B4. The point is, that if one takes the spectral parameter
A equal t0 w+«’, then one can show that a diagonal similarity transformation turns L(IV,q) into a
positive matrix. Therefore, the asymptotics follows from [6, Th. A2] by using the generalized Cauchy
identities of [2], yielding factorized shifts as just described.
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4C. THE QUANTUM LEVEL

The particle picture of solitons that emerges from the considerations in the previous section is surpris-
ing and intriguing at the level of classical field theory, but not more than that from the viewpoint of
physical applications. For instance, a solitary water wave is vastly different from a point particle.
However, at the level of quantum field theory the physical status of a soliton-particle correspondence
is quite different.

To see this, recall that the physical content of a (temperature and density zero) quantum field
theory is completely determined by the S-operator and the bound-state spectrum. Quantum fields are
auxiliary entities serving as a convenient vehicle to arrive at a theoretical understanding of experimen-
tal data concerning particle characteristics. We are not aware of alternative descriptions for quantum
field theories in which particle annihilation and creation occurs. However, soliton quantum field
theories such as the quantized sine-Gordon theory are characterized by an S-operator that conserves
particle number. Therefore, any quantum dynamics that leads to the same S-operator (and bound-
state spectrum) is physically indistinguishable from the quantum field dynamics.

We have worked out these considerations in more detail some ten years ago (cf. the Introduction of
[13]). They served as motivation for the second part of [12], where we constructed relativistic particle
dynamics leading to the S-operators of the Federbush and continuum Ising field theories. (To date,
these are the only positive-energy relativistic quantum field theories for which not only non-
perturbative existence, but also the soliton S-operator ascribed to them have been rigorously
confirmed [70-74].) The N-particle dynamics involved in this alternative description (cf. [12, Section
3]) give rise to the simplest examples of what we have dubbed ‘quantum pure soliton systems’ in Sec-
tion 3A, the N-particle S-matrix being given by the multiplication operator

&Y =TI explige(@;—601f (@), ¢€l0,27) (429
1</ <k<N
on L2RY,aV ). (Here and from now on, € denotes the sign function.) As N-particle dynamics on
L*(R¥ 4" g) yielding this soliton S-operator one can choose

N -
H=M(X Zlmp(ﬁﬂ,-))M ¢r. (4.30)
e

where exp(ﬁaj) denotes the Fourier transform of multiplication by exp(86;) (recall (3.1) and our
standing convention %A=1), and where

M@= TI expliselg—g0/2) (431)
I<j<k<N
(This is possibly not clear from [12, L.c.], but can be gleaned from [75, Section 7B].)
It is to be noted that the classical version of H is free, and that one may rewrite H as

N -
H = 3 TTexplie(q;—qc)/2lexp(B0,) [T expl —i pe(q; — gi)/2] (4.32)
J=V kA k]

Therefore, one may regard H as a degenerate case of the operator S;(Il,y), obtained from (3.5), (3.6)
by fixing z and taking p to oo.

The limit just indicated amounts to taking g to 0 with ug fixed. Thus, even for N =2 we do not
know whether this limit can be given a rigorous sense (in terms of strong convergence of eigenfunc-
tion transforms, say). At any rate, one would have to deal with eigenfunctions that are not invariant
under parity (since (4.32) is not). When one takes the known N =2 II,, case as a lead, this is certainly
not as preposterous as it may appear from (3.26) (which is formally invariant under parity). The point
is, that the II,, Hamiltonian (3.34) is not essentially self-adjoint on 'C§ (R") for gef5,>), and ‘almost
all’ self-adjoint extensions will violate the formal parity invariance of (3.34).

The issue of self-adjoint extensions just mentioned is the key to the connection between the II,, sys-
tems and the quantized nonlinear Schrédinger (NLS) theory. We proceed to describe this relation. To
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this end, we first recall that the latter quantum field theory is characterized by an explicitly particle
number preserving Hamiltonian. Specifically, the restriction to the N-particle sector reads

H= —'12'A+7\ > g9 (4.33)
1<j<k<N
where 8 denotes the Dirac delta function. As is well known, H can be given a rigorous meaning via
quad.ratic form techniques, and then amounts to an unusual self-adjoint extension of the Laplacean
restricted to C§°-functions whose support does not meet the hyperplanes g; = gy.

We shall first discuss the features of H as an operator on L%(R¥), (the symmetric L2-functions).
F9r A>0 the interaction is repulsive and one obtains yet another quantum pure soliton system
without a classical version. The analysis involved in proving this can be found in the Ph.D. thesis of
Oxford [76]. In fact, he handles the far more complicated attractive case A<<0. The complications are

due to the presence of M-body bound states for any M<N, whose center-of-mass wave function
reads

g -0 = T explgi—gl2) 434
I<i<j<M

We are now prepared to detail the relation to the I, particle systems. To this end we begin by
considering the N =2 center-of-mass situation. The key observation is, that the kernel (3.35) can be
continued to ge(—%,%); It then corresponds to a self-adjoint extension of the restriction of (3.34) to
C§ ((0,00)) that differs from the (Friedrichs) extension associated with the choice ge(!%,3/2). For
ge§~'ﬁ,0) the operator & defined by (3.31) with E(q, §)—E(v,g;0,9) (cf. (3.35)) does not extend to
an isometry onto IC. This is due to the presence of a bound state orthogonal to its range, viz.,

Wg) = (shvg)f, q>0 435)
Setting

g=Np, p=2 (4.36)
and taking p—>o0, the kernel E (1/2,A/u;6,9) converges to

%
o wl[28=ia
E(@0) = (n) “[[————2,,,+,.x

and the bound state (4.35) to

Wgq) = exp(Ag/2), q>0 (4.38)
These are precisely the NLS transform and bound state, transformed from L2(R), to L*([0,0)) in the
obvious way. Notice that the (formally) attractive/repulsive 1L, potentials lead to repulsive/attractive
NLS ‘potentials’!

More generally, we expect (strong) convergence of the IL, arbitrary N transforms to the NLS
boson transform in the same scaling limit. Apart from the rule of thumb that in soliton theory the
two-body situation extends to arbitrary particle number, there are two more solid hints that this
should be true. First, the parameter p sets the length scale: When it goes to oo, the Il potentials
converge to 0 inside the Weyl chamber G, cf. (2.18)(2.23). Hence, one expects that the asymptotics
following from (3.21) and (3.44), viz.,

- 1 1 -
E@O ~QCn M3y II uG@-6)* II uG@—6)"
0eSy o i<j, S isil
o '(i)<a”'(j) o (i)>0 ()
- exp(iq - 6,), gv<< - <<q, (4.39)
extends to all of G in the limit. Accepting this and noting

. 20—iA
—_ = 0 = = . 4.40
F].u:gu(IIn,, g =M wb) CTEwY u(NLS,A;60) (4.40)

exp(iqﬂ)-!—c.c.] ,  §6>0 4.37)
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(cf. (3.45)), one obtains the NLS transform corresponding to the channel without bound states (up to
an overall phase). Indeed, the latter is given by the rhs of (4.39) with u—u (NLS) and the factor (—)*
omitted. (The natural comparison operator for the NLS boson case considered here is the generalized
cosine transform.) The second indication of convergence for general N is the bound state behavior for
p~>00: For g<0 and |g| sufficiently small, the II,, dynamics has an M-body bound state

1
e, - = I1 slowg—g¥,  qu<'--<q 441)
Ii<j<M
which converges to the NLS bound state (4.34) in the above scaling limit.
On account of arguments similar to the ones just presented, we expect that the NLS boson
transforms can also be obtained as scaling limits of the g =2 II,y transforms. Indeed, from (3.49) we
have

~limu (.8 =2,a=7~AN/2;6) = uNLS\;6) (4.42)

Recalling a=pfv =pu/2, we see that p—oo when f—0, so that this limit is analogous to (4.40). In
fact, it is straightforward to verify that for g, >0 the N =2 kernel E (g, §) (given by (3.38)-(3.42))
converges to the NLS kernel (4.37) in the limit just detailed.

Provided one restricts attention to the N =2 case, one can also reach the NLS transform (4.37) via
a g =2 Iy transform. Moreover, this can be done in two essentially different ways. The first scaling
limit is the one specified in (4.42), whereas the second one consists in taking a to 7/2, p to 0 and
(hence) B to co; Specifically, one should set a=(w—v\)/2. Also, in the second scaling limit one gets
convergence to (4.37) with ¢ and 0 interchanged. 1t is not clear to us whether similar relations are
going to persist in these two limits when N is greater than 2. At any rate, since solitons and antisoli-
tons are distinguishable, one would need some very special linear combinations of the eigenfunctions
(which, it should be recalled, have not yet been found for N >2).

At this point we should mention that the eigenfunctions of the NLS Hamiltonian (4.33) for distin-
guishable particles are also known [77-79]. (We are not aware of a proof of the Plancherel formula for
this case.) However, for g =2 the ss reflection coefficient r vanishes, in contrast to r (NLS). Therefore,
it is not likely that the g =2 Iy eigenfunctions can lead to the non-symmetrized eigenfunctions of
(4.33). On the other hand, it follows from (3.61), (3.62) that one does obtain the NLS transmission
and reflection in the limit (4.40). Thus, one may expect to get the complete L2(R) transform via the
N =2 II,, eigenfunctions. (We have not checked this.)

Let us add one more remark concerning the situation for distinguishable particles. As already men-
tioned, we have trouble seeing how the L2(R”) transform might be reached via type II systems. How-
ever, it may well be that the desired transform can be obtained via a linear combination of II,, eigen-
functions, as a generalization of the picture for the NLS boson transforms already sketched. (The
latter picture, to be sure, is very plausible but not proven.) Again, for N =2 this can be achieved.
Indeed, the kernel

E(g,6) = E(w/2,M ;|8 1gD+ e(@)e(O)E 0/ 2,1 =N/ ;|6 }ql), ¢, €R” (4.43)

(recall (3.35)) converges to the even extension of the kernel (4.37) on L2(R), and to the kernel
(2/m)*singd on L(R), for p—>c0; This is the desired result, since (4.33) amounts to the Laplacean on
the fermion subspace.

The structure (4.39) of the asymptotics of the II,. eigenfunctions goes back to Harish-Chandra’s
monumental work on harmonic analysis, cf. [31]. As we have recalled above, the NLS boson
transform has this structure for all of the wedge G. In the physics literature this form of the eigen-
functions is referred to as the Bethe Ansatz, after Bethe [80], who was the first to obtain such eigen-
functions for the XXX model (isotropic Heisenberg chain). From a mathematical viewpoint this model
(more precisely, its infinite-volume ground-state representation) is very similar to the attractive NLS
boson model. In fact, Oxford’s solution to the Plancherel problem mentioned above [76] was pat-
terned after previous work on the XXX model by Babbitt and Thomas, who in an impressive series of
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papers [81-84] not only proved the Plancherel formula, but also obtained mathematically rigorous
results concerning soliton scattering and conserved quantities. Presently, work by Babbitt and Gutkin
is under way [85] which promises to elevate the XXZ model to a comparable mathematical level.

It so happens that the XXZ two-magnon S-matrix can be transformed to a difference kernel (cf. e.g.
Ch. 1 in Gaudin’s monograph [86]). It then amounts to the g =2 ILy two-soliton S-matrix (3.49) for
anisotropy parameter Ac(0,1) and to the g =2 IIL4 two-soliton S-matrix [44] for Ae(l, ). This may
be compared to the equality of the NLS two-soliton S-matrix (4.40) and the g =2 II,, S-matrix (3.45).
This is only one reason why we believe that there might be a way to tie in scaling limits of ‘relativis-
tic’ eigenfunctions with the Bethe transforms of the XXZ model, as a generalization of the links
between degenerate Il particle systems and the NLS Bethe transforms sketched above. Since one is
dealing with lattice models, one would probably need limits of systems of type IIL4 or IV,y. How-
ever, to date we have not been able to find a clearcut connection even for N =2.

By now, those readers still with us may well be tired of our hunches. Instead of indulging in
further speculations, let us finish by pointing out some connections that do have solid proofs (though
one may question the assumptions on which these are based). First, the S-matrix(3.56) with r=n/2 is
just the soliton-soliton S-matrix of the quantum sine-Gordon model [45). As pointed out by Zamolod-
chikov [87], this S-matrix is very closely related to the 6-vertex model free energy (cf. e.g. p. 148 in
Baxter’s monograph [88]). Second, when one proceeds as sketched in the paragraph containing (3.54),
but now for the systems dual to the IV, systems, one obtains [44] an S-matrix that has a specializa-
tion related in a similar way to the 8-vertex model free energy [87,88). Third, for r=n/2 the bound-
state spectrum (3.71) amounts to the sine-Gordon soliton-antisoliton bound state spectrum [45].

We do not know how to compare the r=/2 soliton-soliton wave functions (3.38)-(3.42) or the
lowest-energy soliton-antisoliton bound state (3.72) to any previous results in the physics literature.
Indeed, physicists appear to be convinced that a relativistic quantum mechanics description of the
sine-Gordon/massive Thirring model is impossible.
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